Current and Potential Use of Biologically Active Compounds Derived from Cannabis sativa L. in the Treatment of Selected Diseases

pubmed logo

“Cannabis sativa L. contains numerous compounds with antioxidant and anti-inflammatory properties, including the flavonoids and the cannabinoids, particularly Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD).

Cannabinoids have an effect on the endocannabinoid system (ECS), a cellular communication network, and are, hence, widely studied for medical applications.

Epidiolex®, a 99% pure oral CBD extract, has been approved by the FDA for the treatment of epilepsy. Nabiximols (Sativex) is an oromucosal spray containing equal volume of THC and CBD, and it is commonly used as an add-on treatment for unresponsive spasticity in multiple sclerosis (MS) patients.

Several in vitro and in vivo studies have also shown that cannabinoids can be used to treat various types of cancer, such as melanoma and brain glioblastoma; the first positive clinical trials on the anticancer effect of a THC:CBD blend with temozolomide (TMZ) in the treatment of highly invasive brain cancer are very promising.

The cannabinoids exert their anticancer properties in in vitro investigations by the induction of cell death, mainly by apoptosis and cytotoxic autophagy, and the inhibition of cell proliferation. In several studies, cannabinoids have been found to induce tumor regression and inhibit angiogenic mechanisms in vitro and in vivo, as well as in two low-numbered epidemiological studies.

They also exhibit antiviral effects by inhibiting ACE2 transcription, blocking viral replication and fusion, and acting as anti-inflammatory agents; indeed, prior CBD consumption (a study of 93,565 persons in Chicago) has also been associated with a much lower incidence of SARS-CoV-2 infections.

It is postulated that cannabis extracts can be used in the treatment of many other diseases such as systemic lupus erythematosus, type 1 diabetes, or various types of neurological disorders, e.g., Alzheimer’s disease.

The aim of this review is to outline the current state of knowledge regarding currently used medicinal preparations derived from C. sativa L. in the treatment of selected cancer and viral diseases, and to present the latest research on the potential applications of its secondary metabolites.”

https://pubmed.ncbi.nlm.nih.gov/39684447/

“C. sativa L. is an extraordinary plant that provides a valuable raw material for medical applications. Its secondary metabolites, cannabinoids, have attracted growing interest in the fight against illness, mainly due to their effect on CB1 and CB2 cannabinoid receptors.”

https://www.mdpi.com/1422-0067/25/23/12738

Secondary metabolite profiles and anti-SARS-CoV-2 activity of ethanolic extracts from nine genotypes of Cannabis sativa L

pubmed logo

“This study deals with the comprehensive phytochemical composition and antiviral activity against SARS-CoV-2 of acidic (non-decarboxylated) and neutral (decarboxylated) ethanolic extracts from seven high-cannabidiol (CBD) and two high-Δ9-tetrahydrocannabinol (Δ9-THC) Cannabis sativa L. genotypes.

Their secondary metabolite profiles, phytocannabinoid, terpenoid, and phenolic, were determined by LC-UV, GC-MS, and LC-MS/MS analyses, respectively. All three secondary metabolite profiles, cannabinoid, terpenoid, and phenolic, varied significantly among cannabinoid extracts of different genotypes.

The dose-response analyses of their antiviral activity against SARS-CoV-2 showed that only the single predominant phytocannabinoids (CBD or THC) of the neutral extracts exhibited antiviral activity (all IC50 < 10.0 μM). The correlation matrix between phytoconstituent levels and antiviral activity revealed that the phenolic acids, salicylic acid and its glucoside, chlorogenic acid, and ferulic acid, and two flavonoids, abietin, and luteolin, in different cannabinoid extracts from high-CBD genotypes are implicated in the genotype-distinct antagonistic effects on the predominant phytocannabinoid.

On the other hand, these analyses also suggested that the other phytocannabinoids and the flavonoid orientin can enrich the extract’s pharmacological profiles. Thus, further preclinical studies on cannabinoid extract formulations with adjusted non-phytocannabinoid compositions are warranted to develop supplementary antiviral treatments.”

https://pubmed.ncbi.nlm.nih.gov/39543317/

“Our studies showed that neutral extracts of different C. sativa genotypes have antiviral properties against SARS-CoV-2 though further preclinical studies on formulations of these extracts are needed to enhance their antiviral potential. One direction of these studies might be to obtain the extract formulations with modified non-phytocannabinoid compositions and asses their antiviral potential.”

https://onlinelibrary.wiley.com/doi/10.1002/ardp.202400607

Antiviral effect of cannabidiol on K18-hACE2 transgenic mice infected with SARS-CoV-2

pubmed logo

“The aim of this study was to determine the antiviral activity of cannabidiol (CBD) against SARS-CoV-2 infection. CBD is the second most studied cannabinoid obtained from Cannabis plants.

We investigated the potential use of CBD, which has so far proven to have a positive effect on different diseases, in the SARS-CoV-2 infection.

To test this, in vivo studies were carried out using K18-hACE2 transgenic mice. To reveal the potential therapeutic effect of the CBD at the histopathological and molecular level challenge experiments were performed. The study was designed with two groups (n = 10) and in the treatment group animals were infected with SARS-CoV-2 virus strain B.1.1.7 alpha before the administration of CBD.

While the disease progressed and resulted in death in the control group that was infected by the virus alone, it was observed that the infection slowed down and the survival rate increased in the mice treated with CBD along with the virus.

In this study, K18-hACE2 transgenic mice infected with the wild SARS-CoV-2 virus were used to investigate and prove the antiviral activity of CBD.”

https://pubmed.ncbi.nlm.nih.gov/39267200/

“The antiviral action of CBD, which had been stated in previous studies, was evaluated and proved on mice using the wild SARS-CoV-2 virus in this study.”

https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70030

Circulating endocannabinoid levels in SARS-CoV-2 infection and their potential role in the inflammatory response

pubmed logo

“Plasma levels of endocannabinoids (eCBs) are very dynamic and variable in different circumstances and pathologies. The aim of the study was to determine the levels of the main eCBs and N-acylethanolamines (NAEs) in COVID-19 patients during the acute and post-acute phase of SARS-CoV-2 infection. Samples collected before December 31, 2020 were used for the determination of circulating eCB levels by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The association between plasma eCB measurements and biochemical and hematological parameters, as well as serum IL-6 levels, was evaluated. Samples of 64 individuals were analysed, n = 18 healthy donors, n = 30 acute, and n = 16 post-acute patients. Plasma levels of 2-arachidonoylglycerol (2-AG), were significantly elevated in COVID-19 patients when compared to healthy individuals. Plasma N-palmitoylethanolamide (PEA) and N-arachidonoylethanolamide (AEA) levels were found to be decreased in post-acute patient samples. These results suggest that 2-AG plays an important role in the inflammatory cascade in COVID-19 disease; in addition, eCBs might be involved in the post-acute pathogenesis of COVID-19. This study provides evidence of altered levels of circulating eCBs as a consequence of SARS-CoV-2 infection.”

https://pubmed.ncbi.nlm.nih.gov/39174572/

“This study shows that circulating eCBs have been altered following SARS-CoV-2 infection. These variations mainly concern 2-AG that showed increased levels that persisted even 30–60 days post-infection. Further studies are needed to address the potential role of the ECS in the SARS-CoV-2 inflammatory response and its potential role in long COVID development.”

https://www.nature.com/articles/s41598-024-70172-5

Exploring the Relationship Between Cannabis Use And COVID-19 Outcomes

pubmed logo

“Background: Cannabis use is becoming increasingly prevalent worldwide, yet the full spectrum of its effects largely remain unknown. Although cannabis have immunomodulatory properties, there remains a significant gap in our understanding of the potential impact of marijuana use on COVID-19 outcomes. The purpose of this study is to evaluate the effect of chronic cannabis use on severe COVID-19. 

Materials and Methods: National Inpatient Sample Database was used to sample individuals admitted with the diagnosis of COVID-19. Patients were divided into two groups based on cannabis use. Baseline demographics and comorbidities were collected using ICD-10 codes. Patients with missing data or age under 18 were excluded. Propensity matching using R was performed to match cannabis users to non-cannabis users 1:1 on age, race, gender, and 17 other comorbidities. The primary outcome was severe COVID-19 infection, defined as a composite of acute respiratory failure, intubation, acute respiratory distress syndrome (ARDS), or severe sepsis with multiorgan failure. 

Results: Out of 322,214 patients included in the study, 2,603 were cannabis users. Cannabis users were younger and had higher prevalence of tobacco use. On initial analysis, cannabis users had significantly lower rates of severe COVID-19 infection, intubation, ARDS, acute respiratory failure, severe sepsis with multiorgan failure, mortality, and shorter length of hospital stay. After 1:1 matching, cannabis use was associated with lower rates of severe COVID-19 infection, intubation, ARDS, acute respiratory failure, severe sepsis with multiorgan failure, mortality, and shorter length of hospital stay. 

Conclusion: Cannabis users had better outcomes and mortality compared with non-users. The beneficial effect of cannabis use may be attributed to its immunomodulatory effects.”

https://pubmed.ncbi.nlm.nih.gov/39194156/

https://www.liebertpub.com/doi/10.1089/can.2024.0048

Immunomodulatory effects of cannabinoids against viral infections: a review of its potential use in SARS-CoV2 infection

pubmed logo

“The COVID-19 pandemic is a global health crisis affecting millions of people worldwide. Along with vaccine development, there is also a priority to discover new drugs and treatments. One approach involves modulating the immune system to manage inflammation and cytokine storms. Patients with a high severity of complications exhibit a high level of inflammatory cytokines, particularly IL-6, in the airways and other infected tissues.

Several studies have reported the function of the endocannabinoid system in regulating inflammation and different immune responses. Cannabinoids are a class of natural chemicals found in the Cannabis plant. Recently, the anti-inflammatory properties of cannabinoids and their mediatory immunosuppression mechanisms through the endocannabinoid system have engrossed scientists in the health field for infectious conditions.

Research suggests that the immune system can regulate cytokine activation through cannabinoid receptors, particularly with Cannabidiol (CBD), the second most prevalent compound in cannabis. While CBD has been deemed safe by the World Health Organization and shows no signs of abuse potential, excessive CBD use may lead to respiratory depression. CBD shows promise in reducing immune cell recruitment and cytokine storms in organs affected by SARS-CoV2. However, before clinical use, it’s crucial to evaluate cannabinoid-based medications’ active ingredient concentrations and potential interactions with other drugs, along with associated side effects.

Indication-based dosing, consistent formulations, and ensuring purity and potency are essential. This review highlights cannabinoids’ effects on COVID-19 management and prognosis, drawing from preclinical and clinical studies.”

https://pubmed.ncbi.nlm.nih.gov/39071880/

https://link.springer.com/article/10.1007/s13337-024-00871-0

Exploring Cannabinoids as Potential Inhibitors of SARS-CoV-2 Papain-like Protease: Insights from Computational Analysis and Molecular Dynamics Simulations

pubmed logo

“The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a global COVID-19 pandemic, challenging healthcare systems worldwide. Effective therapeutic strategies against this novel coronavirus remain limited, underscoring the urgent need for innovative approaches.

The present research investigates the potential of cannabis compounds as therapeutic agents against SARS-CoV-2 through their interaction with the virus’s papain-like protease (PLpro) protein, a crucial element in viral replication and immune evasion. Computational methods, including molecular docking and molecular dynamics (MD) simulations, were employed to screen cannabis compounds against PLpro and analyze their binding mechanisms and interaction patterns.

The results showed cannabinoids with binding affinities ranging from -6.1 kcal/mol to -4.6 kcal/mol, forming interactions with PLpro. Notably, Cannabigerolic and Cannabidiolic acids exhibited strong binding contacts with critical residues in PLpro’s active region, indicating their potential as viral replication inhibitors. MD simulations revealed the dynamic behavior of cannabinoid-PLpro complexes, highlighting stable binding conformations and conformational changes over time.

These findings shed light on the mechanisms underlying cannabis interaction with SARS-CoV-2 PLpro, aiding in the rational design of antiviral therapies. Future research will focus on experimental validation, optimizing binding affinity and selectivity, and preclinical assessments to develop effective treatments against COVID-19.”

https://pubmed.ncbi.nlm.nih.gov/38932170/

“In summary, targeting PLpro with cannabinoids offers a promising approach for inhibiting viral replication, attenuating pathogenicity, and enhancing therapeutic outcomes in the fight against COVID-19 and other viral infections.”

https://www.mdpi.com/1999-4915/16/6/878

Cannabigerol and Cannabicyclol Block SARS-CoV-2 Cell Fusion

pubmed logo

“The search for new active substances against SARS-CoV-2 is still a central challenge after the COVID-19 pandemic. Antiviral agents to complement vaccination are an important pillar in the clinical situation.

Selected cannabinoids such as cannabigerol, cannabicyclol, cannabichromene, and cannabicitran from Cannabis sativa and synthetic homologues of cannabigerol and cannabicyclol were evaluated for effects on the cell viability of Vero cells (CC50 of cannabigerol and cannabicyclol 40 resp. 38 µM) and reduced virus entry of vesicular stomatitis pseudotyped viruses with surface-expressed SARS-CoV-2 spike protein at 20 µM. In addition to a reduction of pseudotyped virus entry, a titer reduction assay on Vero cells after preincubation of Wuhan SARS-CoV-2 significantly confirmed antiviral activity.

Investigations on the molecular targets addressed by cannabigerol and cannabicyclol indicated that both compounds are inhibitors of SARS-CoV-2 spike protein-mediated membrane fusion, as could be shown by a virus-free reporter fusion inhibition assay (EC50 for cannabigerol 5.5 µM and for cannabicyclol 10.8 µM) and by monitoring syncytia formation in Vero reporter cells. Selectivity indices were calculated as 7.4 for cannabigerol and 3.5 for cannabicyclol. Systematic semisynthetic alterations of cannabigerol and cannabicyclol indicated that the side chains of both compounds do not contribute to the observed anti-membrane fusion activity.”

https://pubmed.ncbi.nlm.nih.gov/38885660/

https://www.thieme-connect.de/products/ejournals/abstract/10.1055/a-2320-8822

The Inhibitory Effects of the Herbals Secondary Metabolites (7α-acetoxyroyleanone, Curzerene, Incensole, Harmaline, and Cannabidiol) on COVID-19: A Molecular Docking Study

pubmed logo

“Background: Since the COVID-19 outbreak in early 2020, researchers and studies are continuing to find drugs and/or vaccines against the disease. As shown before, medicinal plants can be very good sources against viruses because of their secondary compounds which may cure diseases and help in survival of patients. There is a growing trend in the filed patents in this field.

Aims: In the present study, we test and suggest the inhibitory potential of five herbal based extracts including 7α-acetoxyroyleanone, Curzerene, Incensole, Harmaline, and Cannabidiol with antivirus activity on the models of the significant antiviral targets for COVID-19 like spike glycoprotein, Papain-like protease (PLpro), non-structural protein 15 (NSP15), RNA-dependent RNA polymerase and core protease by molecular docking study.

Methods: The Salvia rythida root was extracted, dried, and pulverized by a milling machine. The aqueous phase and the dichloromethane phase of the root extractive were separated by two-phase extraction using a separatory funnel. The separation was performed using the column chromatography method. The model of the important antivirus drug target of COVID-19 was obtained from the Protein Data Bank (PDB) and modified. TO study the binding difference between the studied molecules, the docking study was performed.

Results: These herbal compounds are extracted from Salvia rhytidea, Curcuma zeodaria, Frankincense, Peganum harmala, and Cannabis herbs, respectively. The binding energies of all compounds on COVID-19 main targets are located in the limited area of 2.22-5.30 kcal/mol. This range of binding energies can support our hypothesis for the presence of the inhibitory effects of the secondary metabolites of mentioned structures on COVID-19. Generally, among the investigated herbal structures, Cannabidiol and 7α- acetoxyroyleanone compounds with the highest binding energy have the most inhibitory potential. The least inhibitory effects are related to the Curzerene and Incensole structures by the lowest binding affinity.

Conclusion: The general arrangement of the basis of the potential barrier of binding energies is in the order below: Cannabidiol > 7α-acetoxyroyleanone > Harmaline> Incensole > Curzerene. Finally, the range of docking scores for investigated herbal compounds on the mentioned targets indicates that the probably inhibitory effects on these targets obey the following order: main protease> RNA-dependent RNA polymerase> PLpro> NSP15> spike glycoprotein.”

https://pubmed.ncbi.nlm.nih.gov/38817009/

https://www.eurekaselect.com/article/136307

Cannabis effectiveness on immunologic potency of pulmonary contagion

pubmed logo

“Respiratory illnesses and its repercussions are becoming more prevalent worldwide. It is necessary to research both innovative treatment and preventative techniques. Millions of confirmed cases and fatalities from the COVID-19 epidemic occurred over the previous two years.

According to the review research, cannabinoids are a class of medicines that should be considered for the treatment of respiratory conditions. Cannabinoids and inhibitors of endocannabinoid degradation have illustrated advantageous anti-inflammatory, asthma, pulmonary fibrosis, and pulmonary artery hypotension in numerous studies (in vitro and in vivo). It has been also noted that CB2 receptors on macrophages and T-helper cells may be particularly triggered to lower inflammation in COVID-19 patients.

Since the majority of lung tissue contains cannabinoid receptors, cannabis can be an effective medical tool for treating COVID-19 as well as pulmonary infections. Notably, CB2 and CB1 receptors play a major role in immune system modulation and anti-inflammatory activities.

In this review, we put forth the idea that cannabis might be helpful in treating pulmonary contagion brought on by viral integration, such as that caused by SARS-CoV-2, haemophilus influenza type b, Streptococcus pneumoniae, influenza virus, and respiratory syncytial virus.

Also, a detailed overview of CB receptors, intricate mechanisms, is highlighted connecting link with COVID-19 viral structural modifications along with molecular basis of CB receptors in diminishing viral load in pulmonary disorders supported through evident literature studies. Further, futuristic evaluations on cannabis potency through novel formulation development focusing on in vivo/in vitro systems can produce promising results.”

https://pubmed.ncbi.nlm.nih.gov/38635412/

https://www.degruyter.com/document/doi/10.1515/jbcpp-2023-0030/html