Δ9-Tetrahydrocannabinol Prevents Mortality from Acute Respiratory Distress Syndrome through the Induction of Apoptosis in Immune Cells, Leading to Cytokine Storm Suppression

ijms-logo“Acute Respiratory Distress Syndrome (ARDS) causes up to 40% mortality in humans and is difficult to treat. ARDS is also one of the major triggers of mortality associated with coronavirus-induced disease (COVID-19). We used a mouse model of ARDS induced by Staphylococcal enterotoxin B (SEB), which triggers 100% mortality, to investigate the mechanisms through which Δ9-tetrahydrocannabinol (THC) attenuates ARDS.

SEB was used to trigger ARDS in C3H mice. These mice were treated with THC and analyzed for survival, ARDS, cytokine storm, and metabolome. Additionally, cells isolated from the lungs were used to perform single-cell RNA sequencing and transcriptome analysis. A database analysis of human COVID-19 patients was also performed to compare the signaling pathways with SEB-mediated ARDS.

The treatment of SEB-mediated ARDS mice with THC led to a 100% survival, decreased lung inflammation, and the suppression of cytokine storm. This was associated with immune cell apoptosis involving the mitochondrial pathway, as suggested by single-cell RNA sequencing. A transcriptomic analysis of immune cells from the lungs revealed an increase in mitochondrial respiratory chain enzymes following THC treatment. In addition, metabolomic analysis revealed elevated serum concentrations of amino acids, lysine, n-acetyl methionine, carnitine, and propionyl L-carnitine in THC-treated mice. THC caused the downregulation of miR-185, which correlated with an increase in the pro-apoptotic gene targets. Interestingly, the gene expression datasets from the bronchoalveolar lavage fluid (BALF) of human COVID-19 patients showed some similarities between cytokine and apoptotic genes with SEB-induced ARDS.

Collectively, this study suggests that the activation of cannabinoid receptors may serve as a therapeutic modality to treat ARDS associated with COVID-19.”

https://pubmed.ncbi.nlm.nih.gov/32872332/

https://www.mdpi.com/1422-0067/21/17/6244

Coronavirus Disease-2019 Treatment Strategies Targeting Interleukin-6 Signaling and Herbal Medicine

View details for OMICS: A Journal of Integrative Biology cover image“Coronavirus disease-2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is evolving across the world and new treatments are urgently needed as with vaccines to prevent the illness and stem the contagion. The virus affects not only the lungs but also other tissues, thus lending support to the idea that COVID-19 is a systemic disease. The current vaccine and treatment development strategies ought to consider such systems medicine perspectives rather than a narrower focus on the lung infection only.

COVID-19 is associated with elevated levels of the inflammatory cytokines such as interleukin-6 (IL-6), IL-10, and interferon-gamma (IFN-γ). Elevated levels of cytokines and the cytokine storm have been linked to fatal disease. This suggests new therapeutic strategies through blocking the cytokine storm. IL-6 is one of the major cytokines associated with the cytokine storm. IL-6 is also known to display pleiotropic/diverse pathophysiological effects. We suggest the blockage of IL-6 signaling and its downstream mediators such as Janus kinases (JAKs), and signal transducer and activators of transcription (STATs) offer potential hope for the treatment of severe cases of COVID-19. Thus, repurposing of already approved IL-6-JAK-STAT signaling inhibitors as well as other anti-inflammatory drugs, including dexamethasone, is under development for severe COVID-19 cases.

We conclude this expert review by highlighting the potential role of precision herbal medicines, for example, the Cannabis sativa, provided that omics technologies can be utilized to build a robust scientific evidence base on their clinical safety and efficacy. Precision herbal medicine buttressed by omics systems science would also help identify new molecular targets for drug discovery against COVID-19.”

https://pubmed.ncbi.nlm.nih.gov/32857671/

Cannabis sativa is a plant known to contain anti-inflammatory compounds such as cannabinoid cannabidiol. In addition to other compounds such as terpenes, these compounds have been suggested to have potential anticancer properties. Like other herbal plants, we suggest C. sativa warrants further mechanistic research in relationship to putative effects in COVID-19.”

https://www.liebertpub.com/doi/10.1089/omi.2020.0122

The interaction between the endocannabinoid system and the renin angiotensin system and its potential implication for COVID-19 infection

 Journal of Cannabis Research | Home“Coronavirus disease 2019 (COVID-19) is spreading fast all around the world with more than fourteen millions of detected infected cases and more than 600.000 deaths by 20th July 2020. While scientist are working to find a vaccine, current epidemiological data shows that the most common comorbidities for patients with the worst prognosis, hypertension and diabetes, are often treated with angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs).

Body: Both ACE inhibitors and ARBs induce overexpression of the angiotensin converting enzyme 2 (ACE-2) receptor, which has been identified as the main receptor used by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to enter into the alveolar cells of the lungs. While cannabinoids are known to reduce hypertension, the studies testing the hypotensive effects of cannabinoids never addressed their effects on ACE-2 receptors. However, some studies have linked the endocannabinoid system (ECS) with the renin angiotensin system (RAS), including a cross-modulation between the cannabinoid receptor 1 (CB1) and angiotensin II levels.

Conclusion: Since there are around 192 million people using cannabis worldwide, we believe that the mechanism underlying the hypotensive properties of cannabinoids should be urgently studied to understand if they can also lead to ACE-2 overexpression as other antihypertensive drugs do.”

https://pubmed.ncbi.nlm.nih.gov/32835160/

https://jcannabisresearch.biomedcentral.com/articles/10.1186/s42238-020-00030-4

Opioids/cannabinoids as a potential therapeutic approach in COVID-19 patients

Publication Cover“So far, no vaccine has been successfully developed and there is no effective treatment of COVID-19.

Since intensive inflammation leads to disease-induced morbidity and mortality, inhibition of the hyperinflammatory response is a definitive drug therapy objective.

Certainly, there is an urgent need for a substance that can potentially counter the effects of the virus and alleviate the symptoms and severity of the disease.

Could opioids/cannabinoids be an effective treatment for COVID-19?

Since opioids/cannabinoids receptors-based drugs can modulate immune cell migration and cytokine/chemokine secretion, they represent a promising pharmacological platform for developing anti-inflammatory therapeutics.

Therefore in the absence of effective treatments to decrease the damage associated with COVID-19 especially in those admitted to the ICU and suffer from exaggerated inflammatory response, opioids/cannabinoids receptor agonists might potentially open up an effective therapeutic approach in COVID-19 infection.

It is interesting to remember that physicians in the late 19th century used anodynes of opium tincture as a treatment of ‘bronchitis’ and other ailments in infants and children, as case reports and experience ‘demonstrated the efficacy’ of the concoction in controlling coughing and facilitating breathing.

Also, today some products of cannabinoids are used to modulate an inflammatory response. This permits us to rediscover the past and utilize the present, with hopes of finding the missing links in the pathophysiology of COVID-19, and raises the issue of opioids/cannabinoids utilization in the context of COVID-19.

It is suggested that clinical trials could be conducted on opioids/cannabinoids products with immunomodulatory activity. We hope that, with great efforts, scientific support, and sharing of information, the overcoming of COVID-19 will come soon.”

https://www.tandfonline.com/doi/full/10.1080/17476348.2020.1787836

Administration of Δ9-Tetrahydrocannabinol (THC) Post-Staphylococcal Enterotoxin B Exposure Protects Mice From Acute Respiratory Distress Syndrome and Toxicity

Frontiers in Pharmacology welcomes new Field Chief Editor ...“Acute Respiratory Distress Syndrome (ARDS) is a life-threatening complication that can ensue following Staphylococcus aureus infection. The enterotoxin produced by these bacteria (SEB) acts as a superantigen thereby activating a large proportion of T cells leading to cytokine storm and severe lung injury.

Δ9Tetrahydrocannabinol (THC), a psychoactive ingredient found in Cannabis sativa, has been shown to act as a potent anti-inflammatory agent. In the current study, we investigated the effect of THC treatment on SEB-induced ARDS in mice.

While exposure to SEB resulted in acute mortality, treatment with THC led to 100% survival of mice. THC treatment significantly suppressed the inflammatory cytokines, IFN-γ and TNF-α. Additionally, THC elevated the induction of regulatory T cells (Tregs) and their associated cytokines, IL-10 and TGF-β. Moreover, THC caused induction of Myeloid-Derived Suppressor Cells (MDSCs).

THC acted through CB2 receptor as pharmacological inhibitor of CB2 receptors blocked the anti-inflammatory effects. THC-treated mice showed significant alterations in the expression of miRNA (miRs) in the lung-infiltrated mononuclear cells (MNCs). Specifically, THC caused downregulation of let7a-5p which targeted SOCS1 and downregulation of miR-34-5p which caused increased expression of FoxP3, NOS1, and CSF1R.

Together, these data suggested that THC-mediated alterations in miR expression in the lungs may play a critical role in the induction of immunosuppressive Tregs and MDSCs as well as suppression of cytokine storm leading to attenuation of SEB-mediated lung injury.”

https://pubmed.ncbi.nlm.nih.gov/32612530/

“In summary, the current study suggests that treatment of mice with THC post-SEB challenge protects mice from SEB-mediated toxicity by inhibiting inflammation and ARDS through the modulation of miRs. Because SEB is a super antigen that drives cytokine storm, our studies suggest that THC is a potent anti-inflammatory agent that has the potential to be used as a therapeutic modality to treat SEB-induced ARDS.

It is of interest to note that a significant proportion of Coronavirus disease 2019 (COVID-19) patients come down with sepsis and ARDS accompanied by cytokine storm. ”

https://www.frontiersin.org/articles/10.3389/fphar.2020.00893/full

The Potential of Cannabidiol in the COVID-19 Pandemic: A Hypothesis Letter

British Journal of Pharmacology“Identifying candidate drugs effective in the new coronavirus disease 2019 (Covid-19) is crucial, pending a vaccine against SARS-CoV2. We suggest the hypothesis that Cannabidiol (CBD), a non-psychotropic phytocannabinoid, has the potential to limit the severity and progression of the disease for several reasons: 1) High-CBD Cannabis Sativa extracts are able to downregulate the expression of the two key receptors for SARS-CoV2 in several models of human epithelia 2) CBD exerts a wide range of immunomodulatory and anti-inflammatory effects and it can mitigate the uncontrolled cytokine production featuring Acute Lung Injury 3) Being a PPARγ agonist, it can display a direct antiviral activity 4) PPARγ agonists are regulators of fibroblast/myofibroblast activation and can inhibit the development of pulmonary fibrosis, thus ameliorating lung function in recovered patients. We hope our hypothesis, corroborated by several preclinical evidence, will inspire further targeted studies to test CBD as a support drug against the COVID-19 pandemic.”

https://pubmed.ncbi.nlm.nih.gov/32519753/

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.15157

Cannabinoid Receptor Type 2: A Possible Target in SARS-CoV-2 (CoV-19) Infection?

ijms-logo“In late December 2019, a novel coronavirus (SARS-CoV-2 or CoV-19) appeared in Wuhan, China, causing a global pandemic. SARS-CoV-2 causes mild to severe respiratory tract inflammation, often developing into lung fibrosis with thrombosis in pulmonary small vessels and causing even death. COronaVIrus Disease (COVID-19) patients manifest exacerbated inflammatory and immune responses, cytokine storm, prevalence of pro-inflammatory M1 macrophages and increased levels of resident and circulating immune cells. Men show higher susceptibility to SARS-CoV-2 infection than women, likely due to estrogens production. The protective role of estrogens, as well as an immune-suppressive activity that limits the excessive inflammation, can be mediated by cannabinoid receptor type 2 (CB2). The role of this receptor in modulating inflammation and immune response is well documented in fact in several settings. The stimulation of CB2 receptors is known to limit the release of pro-inflammatory cytokines, shift the macrophage phenotype towards the anti-inflammatory M2 type and enhance the immune-modulating properties of mesenchymal stromal cells. For these reasons, we hypothesize that CB2 receptor can be a therapeutic target in COVID-19 pandemic emergency.”

https://pubmed.ncbi.nlm.nih.gov/32471272/

https://www.mdpi.com/1422-0067/21/11/3809

Acute Inflammation and Pathogenesis of SARS-CoV-2 Infection: Cannabidiol as a Potential Anti-Inflammatory Treatment?

Cytokine & Growth Factor Reviews

“Cannabidiol to decrease SARS-CoV-2 associated inflammation.

Cannabidiol (CBD) is a phytocannabinoid with various clinical applications and has proven efficacy for certain medical conditions, along with a favorable safety and tolerability profile.

Cannabinoids can suppress immune activation and inflammatory cytokine production, suggesting their potential for tempering excessive inflammation.

Therefore, as SARS-CoV2 induces significant damage through pro-inflammatory cytokine storm mediated by macrophages and other immune cells and based on the fact that CBD has broad anti-inflammatory properties, CBD might represent as a potential anti-inflammatory therapeutic approach against SARS-CoV2-induced inflammation.

As CBD is already a therapeutic agent used in clinical medicine and has a favorable safety profile, the results of in vitro and animal model proof-of-concept studies would provide the necessary supporting evidence required before embarking on costly and labor-intensive clinical trials.”

https://pubmed.ncbi.nlm.nih.gov/32467020/

https://www.sciencedirect.com/science/article/pii/S1359610120301040?via%3Dihub

SARS-CoV2 induced respiratory distress: Can Cannabinoids be added to anti-viral therapies to reduce lung inflammation?

Brain, Behavior, and Immunity“Coronavirus disease-2019 (COVID-19), caused by Severe Acute Respiratory Syndrome coronoavirus-2 (SARS-CoV2) has emerged as a global pandemic, which was first reported in Wuhan, China. Recent reports have suggested that acute infection is associated with a cytokine superstorm, which contributes to the symptoms of fever, cough, muscle pain and in severe cases bilateral interstitial pneumonia characterized by ground glass opacity and focal chest infiltrates that can be visualized on computerized tomography scans. Currently, there are no effective antiviral drugs or vaccines against SARS-CoV2. In the recent issue of BBI, Zhang et al. thoroughly summarized the current status of potential therapeutic strategies for COVID-19. One of them, anti-IL6 receptor (Tocilizumab) antibody, resulted in clearance of lung consolidation and recovery in 90% of the 21 treated patients. Although promising, it has also produced adverse effects like pancreatitis and hypertriglyceridemia, which make it imperative to explore effective alternative anti-inflammatory strategies. Here, we intend to highlight the potential effects of cannabinoids, in particular, the non-psychotropic cannabidiol (CBD), that has shown beneficial anti-inflammatory effects in pre-clinical models of various chronic inflammatory diseases and is FDA approved for seizure reduction in children with intractable epilepsy.

Like Δ9-tetrahydrocannabinol (Δ9-THC), the most well-studied cannabinoid, CBD decreased lung inflammation in a murine model of acute lung injury potentially through the inhibition of proinflammatory cytokine production by immune cells and suppressing exuberant immune responses. CBD can inhibit the production of proinflammatory cytokines like interleukin (IL)-2, IL-6, IL-1α and β, interferon gamma, inducible protein-10, monocyte chemoattractant protein-1, macrophage inflammatory protein-1α, and tumor necrosis factor-α that have been associated with SARS-CoV2 induced multi-organ pathology and mortality. In a murine model of chronic asthma, CBD reduced proinflammatory cytokine production, airway inflammation and fibrosis. Moreover, CBD can effectively inhibit the JAK-STAT pathway including the production and action of type I interferons without leading to addiction, alterations in heart rate or blood pressure and adverse effects on the gastrointestinal tract and cognition. In simian immunodeficiency virus (SIV)-infected rhesus macaques (RMs), we reported THC mediated attenuation of IFN stimulated gene expression in the intestine. Similar to CBD, chronic THC administration blocked inflammation induced fibrosis in lymph nodes of chronically SIV-infected RMs. Unlike THC, CBD has a high margin of safety and is well tolerated pharmacologically even after treatments of up to 1500 mg/day for two weeks in both animals and humans, which suggests its feasibility to reduce SARS-CoV2 induced lung inflammation/pathology and disease severity.

The many uncertainties associated with the COVID-19 pandemic such as status of the economy, employment and loss of connection can fuel depression, fear and anxiety. CBD has shown promise as an alternative therapy for the clinical management of anxiety disorders. Based on its anxiolytic and anti-depressant properties, it has been suggested that CBD could be used to improve the mental and somatic health of patients suffering from anxiety and emotional stress after recovering from Ebola disease. Like Ebola, patients recovering from COVID-19 may experience various psychological and social stressors that may be triggered by residual chronic inflammation and autoimmune reactions. Therefore, randomized clinical trials to test the efficacy of CBD on alleviating anxiety and fear associated with COVID-19 infection and its consequences on people’s physical, social and psychological well-being may be beneficial in the future. Additionally, severely ill COVID-19 patients exhibited neurological symptoms like cerebrovascular disease, headache and disturbed consciousness (Reviewed in. Brain edema, neuronal degeneration and presence of SARS-CoV2 in the cerebrospinal fluid (CSF) were confirmed at autopsy. Therefore, longitudinal CSF sampling using non-human primate (NHP) studies may help clarify whether and when SARS-CoV2 invades the brain, and if this happens, does it result in neuroinflammation and more importantly, whether cannabinoids can modulate these events.

Being a negative allosteric modulator of the cannabinoid receptor-1, CBD can counter the psychotropic effects of THC when co-administered with THC. Although Remdesivir reduced the mortality rate of seriously ill COVID-19 patients needing invasive ventilation, similar studies in rhesus macaques revealed minimal subpleural inflammatory cellular infiltrates in the lungs of clinically recovered Remdesivir treated RMs at necropsy. This suggests persistence of inflammation and may partly explain the 20–30% reduction in lung function in COVID-19 patients after recovery, which if left unresolved may lead to pulmonary fibrosis. Collectively, these findings support the investigation of cannabinoids as a plausible option to be added as an adjunct to Remdesivir or any new antivirals on SARS-CoV2 induced lung inflammation.”

https://www.ncbi.nlm.nih.gov/pubmed/32360437

https://www.sciencedirect.com/science/article/pii/S0889159120307078?via%3Dihub

“Cannabis Indica speeds up Recovery from Coronavirus”   https://www.researchgate.net/publication/339746853_Cannabis_Indica_speeds_up_Recovery_from_Coronavirus

Cannabis Indica speeds up Recovery from Coronavirus

ResearchGate“Cannabis Indica Speeds up Recovery from Coronavirus Severe acute respiratory syndrome (SARS) is a viral respiratory disease caused by the SARS coronavirus (SARS-CoV).

Cannabis indica speeds up recovery.

Recovered individuals do not infect others.

Cannabis indica resin is antiviral and inhibits cell proliferation.

It has a higher efficacy than any single compound like THC or CBD”

https://www.researchgate.net/publication/339746853_Cannabis_Indica_speeds_up_Recovery_from_Coronavirus