The role of fatty acid hydrolase gene variants in inflammatory bowel disease.

“Recent studies suggest a role for the endocannabinoid system, including fatty acid amide hydrolase (FAAH), in intestinal inflammation.

AIM:

To analyse FAAH expression and the FAAH 385 C/A (p.Pro129Thr; rs324420) single nucleotide polymorphism (SNP) in-patients with Crohn’s disease (CD) and ulcerative colitis (UC).

CONCLUSION:

The FAAH p.Pro129Thr polymorphism may modulate the CD phenotype.”

http://www.ncbi.nlm.nih.gov/pubmed/19053981

Role of cannabinoid receptors and RAGE in inflammatory bowel disease.

“The endocannabinoid system is involved in many inflammatory diseases, such as Crohn’s disease (CD) and ulcerative colitis (UC). The distribution and expression of cannabinoid receptors 1 (CNR1) and 2 (CNR2) in combination with inflammatory cytokines and RAGE (receptor of advanced glycation end products), which is also overactive in these diseases, in dependency of the extent of inflammation and alteration of the colon barrier is still unclear and needs to be elucidated…

 

CONCLUSION:

We showed that cannabinoid receptors are expressed differentially in inflammatory bowel disease and that the expression seems to be influenced by the underlying disease and by localized inflammation.”

http://www.ncbi.nlm.nih.gov/pubmed/21472688

The pathophysiologic rationale for biological therapies in inflammatory bowel disease.

“Inflammatory bowel disease is driven by an excessive immune response in the gut wall. This review summarises important new developments in understanding this immune response and the downstream mechanisms of intestinal injury, alongside their potential role in opening up new avenues of treatment…

Understanding the immunology of inflammatory bowel disease continues to underpin the vast majority of new therapies and identifies new targets.

Novel approaches, such as exploiting the antiinflammatory role of cannabinoid receptors, may also prove productive in the future.”

http://www.ncbi.nlm.nih.gov/pubmed/15930983

Cannabinoids for gastrointestinal diseases: potential therapeutic applications.

“Delta(9)-Tetrahydrocannabinol (the active ingredient of marijuana), as well as endogenous and synthetic cannabinoids, exert many biological functions by activating two types of cannabinoid receptors, CB(1) and CB(2) receptors. CB(1) receptors have been detected on enteric nerves, and pharmacological effects of their activation include gastroprotection, reduction of gastric and intestinal motility and reduction of intestinal secretion.

 The digestive tract also contains endogenous cannabinoids (i.e., the endocannabinoids anandamide and 2-aracidonylglycerol) and mechanisms for endocannabinoid inactivation (i.e., endocannabinoids uptake and enzymatic degradation). Cannabinoid receptors, endocannabinoids and the proteins involved in endocannabinoids inactivation are collectively referred as the ‘endogenous cannabinoid system’.

 A pharmacological modulation of the endogenous cannabinoid system could provide new therapeutics for the treatment of a number of gastrointestinal diseases, including nausea and vomiting, gastric ulcers, irritable bowel syndrome, Crohn’s disease, secretory diarrhoea, paralytic ileus and gastroesophageal reflux disease. Some cannabinoids are already in use clinically, for example, nabilone and delta(9)-tetrahydrocannabinol are used as antiemetics.”

http://www.ncbi.nlm.nih.gov/pubmed/12517253

Endocannabinoids and the gastrointestinal tract.

“In the past centuries, different preparations of marijuana have been used for the treatment of gastrointestinal (GI) disorders, such as GI pain, gastroenteritis and diarrhea.

 Delta9-tetrahydrocannabinol (THC; the active component of marijuana), as well as endogenous and synthetic cannabinoids, exert their biological functions on the gastrointestinal tract by activating two types of cannabinoid receptors, cannabinoid type 1 receptor (CB1 receptor) and cannabinoid type 2 receptor (CB2 receptor). While CB1 receptors are located in the enteric nervous system and in sensory terminals of vagal and spinal neurons and regulate neurotransmitter release, CB2 receptors are mostly distributed in the immune system, with a role presently still difficult to establish.

Under pathophysiological conditions, the endocannabinoid system conveys protection to the GI tract, eg from inflammation and abnormally high gastric and enteric secretion.

 For such protective activities, the endocannabinoid system may represent a new promising therapeutic target against different GI disorders, including frankly inflammatory bowel diseases (eg, Crohn’s disease), functional bowel diseases (eg, irritable bowel syndrome), and secretion- and motility-related disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/16751708

The endocannabinoid system in the physiology and pathophysiology of the gastrointestinal tract.

“Numerous investigations have recently demonstrated the important roles of the endocannabinoid system in the gastrointestinal (GI) tract under physiological and pathophysiological conditions.

 In the GI tract, cannabinoid type 1 (CB1) receptors are present in neurons of the enteric nervous system and in sensory terminals of vagal and spinal neurons, while cannabinoid type 2 receptors are located in immune cells. Activation of CB1 receptors was shown to modulate several functions in the GI tract, including gastric secretion, gastric emptying and intestinal motility.

Under pathophysiological conditions induced experimentally in rodents, the endocannabinoid system conveys protection to the GI tract (e.g. from inflammation and abnormally high gastric and enteric secretions).

Such protective activities are largely in agreement with anecdotal reports from folk medicine on the use of Cannabis sativa extracts by subjects suffering from various GI disorders.

 Thus, the endocannabinoid system may serve as a potentially promising therapeutic target against different GI disorders, including frankly inflammatory bowel diseases (e.g. Crohn’s disease), functional bowel diseases (e.g. irritable bowel syndrome) and secretion- and motility-related disorders.

As stimulation of this modulatory system by CB1 receptor agonists can lead to unwanted psychotropic side effects, an alternative and promising avenue for therapeutic applications resides in the treatment with CB1 receptor agonists that are unable to cross the blood-brain barrier, or with compounds that inhibit the degradation of endogenous ligands (endocannabinoids) of CB1 receptors, hence prolonging the activity of the endocannabinoid system.”

http://www.ncbi.nlm.nih.gov/pubmed/16133420

Medical cannabis: the opportunity versus the temptation.

“The cannabis plant has been known to humanity for centuries as a remedy for pain, diarrhea, and inflammation. Current research has shown cannabis to be a useful remedy for many diseases, including multiple sclerosis, dystonia, and chronic pain.

 Cannabinoids are used to improve food intake in anorexia of AIDS patients and to prevent vomiting due to cancer chemotherapy. In inflammatory conditions cannabinoids improve pain in rheumatoid arthritis and pain and diarrhea in Crohn’s disease. Cannabinoids reduce the size of brain infarct and cardiac reperfusion injury. However, cannabinoid treatment is not free of side effects including euphoria, psychosis, anxiety, paranoia, dependence and abuse.

Since the cannabinoid system is involved in many physiological and pathological processes, the therapeutic potential is great. We must not be blind to the opportunity offered to us by medical cannabis just because it is an illicit drug, nor should we be temped by the quick response of patients to the central effect of cannabis. More research is warranted to explore the full potential of cannabis as medicine.”

http://www.ncbi.nlm.nih.gov/pubmed/22352284

Beneficial effect of the non-psychotropic plant cannabinoid cannabigerol on experimental inflammatory bowel disease.

“Inflammatory bowel disease (IBD) is an incurable disease which affects millions of people in industrialised countries. Anecdotal and scientific evidence suggest that Cannabis use may have a positive impact in IBD patients.

 Here, we investigated the effect of cannabigerol (CBG), a non-psychotropic Cannabis-derived cannabinoid, in a murine model of colitis…

  In conclusion, CBG attenuated murine colitis, reduced nitric oxide production in macrophages (effect being modulated by the CB(2) receptor) and reduced ROS formation in intestinal epithelial cells.

CBG could be considered for clinical experimentation in IBD patients.”

http://www.ncbi.nlm.nih.gov/pubmed/23415610

From cannabis to the endocannabinoid system: refocussing attention on potential clinical benefits.

Image result for West Indian Med J

“Cannabis sativa is one of the oldest herbal remedies known to man. Over the past four thousand years, it has been used for the treatment of numerous diseases but due to its psychoactive properties, its current medicinal usage is highly restricted. In this review, we seek to highlight advances made over the last forty years in the understanding of the mechanisms responsible for the effects of cannabis on the human body and how these can potentially be utilized in clinical practice. During this time, the primary active ingredients in cannabis have been isolated, specific cannabinoid receptors have been discovered and at least five endogenous cannabinoid neurotransmitters (endocannabinoids) have been identified. Together, these form the framework of a complex endocannabinoid signalling system that has widespread distribution in the body and plays a role in regulating numerous physiological processes within the body. Cannabinoid ligands are therefore thought to display considerable therapeutic potential and the drive to develop compounds that can be targeted to specific neuronal systems at low enough doses so as to eliminate cognitive side effects remains the ‘holy grail’ of endocannabinoid research.”

http://www.ncbi.nlm.nih.gov/pubmed/23155985

Cannabis and endocannabinoid modulators: Therapeutic promises and challenges

Abstract

  “The discovery that botanical cannabinoids such as delta-9 tetrahydrocannabinol exert some of their effect through binding specific cannabinoid receptor sites has led to the discovery of an endocannabinoid signaling system, which in turn has spurred research into the mechanisms of action and addiction potential of cannabis on the one hand, while opening the possibility of developing novel therapeutic agents on the other. This paper reviews current understanding of CB1, CB2, and other possible cannabinoid receptors, their arachidonic acid derived ligands (e.g. anandamide; 2 arachidonoyl glycerol), and their possible physiological roles. CB1 is heavily represented in the central nervous system, but is found in other tissues as well; CB2 tends to be localized to immune cells. Activation of the endocannabinoid system can result in enhanced or dampened activity in various neural circuits depending on their own state of activation. This suggests that one function of the endocannabinoid system may be to maintain steady state. The therapeutic action of botanical cannabis or of synthetic molecules that are agonists, antagonists, or which may otherwise modify endocannabinoid metabolism and activity indicates they may have promise as neuroprotectants, and may be of value in the treatment of certain types of pain, epilepsy, spasticity, eating disorders, inflammation, and possibly blood pressure control.”

Summary

“The discovery of an endocannabinoid signaling system has opened new possibilities for research into understanding the mechanisms of marijuana actions, the role of the endocannabinoid system in homeostasis, and the development of treatment approaches based either on the phytocannabinoids or novel molecules. CB1 agonists may have roles in the treatment of neuropathic pain, spasticity, nausea and emesis, cachexia, and potentially neuroprotection after stroke or head injury. Agonists and antagonists of peripheral CB receptors may be useful in the treatment of inflammatory and autoimmune disorders, as well as hypertension and other cardiovascular diseases. CB1 antagonists may find utility in management of obesity and drug craving. Other novel agents that may not be active at CB receptor sites, but might otherwise modify cannabinoid transport or metabolism, may also have a role in therapeutic modification of the endocannabinoid system. While the short and long term toxicities of the newer compounds are not known, one must expect that at least some of the acute effects (psychotropic effects; hypotension) may be shared by CB agonists. While there are few, long-term serious toxicities attributable to marijuana, extrapolation to newer and more potent agonists, antagonists, and cannabinoid system modulators cannot be assumed. CB1 agonists have the potential in animal models to produce drug preference and drug seeking behaviors as well as tolerance and abstinence phenomena similar to, though not generally as severe as those of other drugs of addiction. There is increasing evidence from human observations that withdrawal from the phytocannabinoids can produce an abstinence syndrome characterized primarily by irritability, sleep disturbance, mood disturbance, and appetite disturbance in chronic heavy users, therefore, such possible effects will need to be considered in the evaluation of newer shorter acting and more potent agonists.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2544377/