Medical Marijuana Helps Cure Chronic Disease

Medical Marijuana Helps Cure Chronic Disease

“The medicinal power of Marijuana is well documented throughtout history

Back in 2700 BC, According to Chinese lore, the Emperor Shen Nung, considered the Father of Chinese medicine, in 2700 BC ,discovered the healing properties of Marijuana as well as Ginseng and Ephedra.

Throughout recorded history, the use of Medical Marijuana  has been linked to the ancient Egyptians, Persians, Greek civilizations, George Washington, Queen Victoria and even mainstream medicine by the 1840s.

From the 1850s to Y 1942, Marijuana was listed in the United States Pharmacopeia, an official public standards-setting authority for all prescription and over-the counter medicines, as a treatment for tetanus, cholera, rabies, dysentery, alcoholism, opiate addiction, convulsive disorders, insanity, excessive menstrual bleeding and many other health problems. My father was a Dental doctor and had a license to dispense the drug, pharmacies carried it back then.

During that same time frame prohibition gained popularity, that along with a growing “faith” in federal government.

By Y 1937, the United States passed its 1st federal law against Marijuana despite objections by the American Medical Association (AMA).

In fact, Dr. William C. Woodward, testifying on behalf of the AMA, told the US Congress:

“The American Medical Association knows of no evidence that Marijuana is a dangerous drug.”

He warned that a prohibition “loses sight of the fact that future investigation may show that there are substantial medical uses for Cannabis.”

Today, we see a growing trend of acceptance of Marijuana for its medicinal purposes.

Dr. Sanjay Gupta, CNN’s chief medical correspondent, reversed his Y 2009 opinion against Marijuana when he said, “We have been terribly and systematically misled for nearly 70 yrs in the United States, and I apologize for my own role in that.”

Now people including lawmakers are seeing the legalization of Marijuana in states like Colorado and Washington for “recreational” purposes. Most Americans are in favor of Medical Marijuana,  and the legalization of this drug.

The Big Q: why does the federal government want to ban its usage?

The Big A: it is all about control and money, and there is a major market for it, plus it poses a major threat to the pharmaceutical industry.

Below are just a few of the many health benefits associated with Medical Marijuana:

1. It can stop HIV from spreading throughout the body.
2. It slows the progression of Alzheimer’s.
3. It slows the spread of cancer cells.
4. It is an active pain reliever.
5. It can prevent or help with opiate addiction.
6. It combats depression, anxiety and ADHD.
7. It can treat epilepsy and Tourette’s.
8. It can help with other neurological damage, such as concussions and strokes.
9. It can prevent blindness from glaucoma.
10. Its connected to lower insulin levels in diabetics.

Contrary to popular notions, many patients  experience health benefits from Medical Marijuana without “getting stoned.””

http://www.livetradingnews.com/medical-marijuana-helps-cure-chronic-disease-55569.htm#.U6VjgZRX-uY

Towards a personalized treatment in depression: endocannabinoids, inflammation and stress response.

“The complex nature of depression is mirrored by difficulties in tailoring its treatment. Key underlying mechanisms of this mental disorder include elevated inflammation and a dysregulated hypothalamic-pituitary-adrenal (HPA) axis. More recently, the endocannabinoid system has been proposed as another important component in the pathogenesis of depression, and strong evidence suggests that all three systems communicate with each other. A growing number of genetic studies have investigated polymorphisms in depression in each of these systems separately. However, no study to date has looked at these genes in conjunction. In this article we will review the crosstalk between the endocannabinoid system, immune system and HPA axis; and discuss the evidence of gene polymorphisms and their relation to the risk of depression and its treatment. We propose future directions where genes of these three systems are considered from a joint perspective to improve prediction of treatment response, taking into account potentially overlooked genetic variations.”

http://www.ncbi.nlm.nih.gov/pubmed/24798725

http://www.thctotalhealthcare.com/category/depression-2/

Cannabinoid receptor type 1 receptors on GABAergic vs. glutamatergic neurons differentially gate sex-dependent social interest in mice.

“Abnormalities in social behavior are found in almost all psychiatric disorders, such as anxiety, depression, autism, and schizophrenia. Thus, comprehension of the neurobiological basis of social interaction is important for a better understanding of numerous pathologies and improved treatments.

Several findings have suggested that an alteration of cannabinoid receptor type 1 (CB1) receptor function could be involved in the pathophysiology of such disorders…

In conclusion, we provide evidence that CB1 receptors specifically modulate the social investigation of female mice in a neuronal subtype-specific manner.”

http://www.ncbi.nlm.nih.gov/pubmed/24698342

Intense exercise increases circulating endocannabinoid and BDNF levels in humans–possible implications for reward and depression.

“The endocannabinoid system is known to have positive effects on depression partly through its actions on neurotrophins, such as Brain-Derived Neurotrophic Factor (BDNF). As BDNF is also considered the major candidate molecule for exercise-induced brain plasticity, we hypothesized that the endocannabinoid system represents a crucial signaling system mediating the beneficial antidepressant effects of exercise…

These findings provide evidence in humans that acute exercise represents a physiological stressor able to increase peripheral levels of AEA and that BDNF might be a mechanism by which AEA influences the neuroplastic and antidepressant effects of exercise.”

http://www.ncbi.nlm.nih.gov/pubmed/22029953

“Neuroplasticity – exercise-induced response of peripheral brain-derived neurotrophic factor: a systematic review of experimental studies in human subjects. Exercise is known to induce a cascade of molecular and cellular processes that support brain plasticity. Brain-derived neurotrophic factor (BDNF) is an essential neurotrophin that is also intimately connected with central and peripheral molecular processes of energy metabolism and homeostasis, and could play a crucial role in these induced mechanisms… We can only speculate which central regions and peripheral sources in particular circulating BDNF originates from,…” http://www.ncbi.nlm.nih.gov/pubmed/20726622

“Preliminary evidence of cannabinoid effects on brain-derived neurotrophic factor (BDNF) levels in humans… cannabinoids modulate brain-derived neurotrophic factor (BDNF)… Delta(9)-THC increased serum BDNF levels…” http://www.ncbi.nlm.nih.gov/pubmed/18807247

“Antidepressant-like effects of Δ⁹-tetrahydrocannabinol…” http://www.ncbi.nlm.nih.gov/pubmed/22634064

“Antidepressant-like effects of cannabidiol… CBD treatment did not change hippocampal BDNF levels… CBD induces antidepressant-like effects…” http://www.ncbi.nlm.nih.gov/pubmed/20002102

Regulatory role of the Cannabinoid-2 receptor in stress-induced neuroinflammation in mice.

“Stress-exposure produces excitoxicity and neuroinflammation, contributing to the cellular damage observed in stress-related neuropathologies. The endocannabinoid system is present in stress-responsive neural circuits and it is emerging as a homeostatic system. The aim of this study was to elucidate the possible regulatory role of cannabinoid-2 receptor in stress-induced excitotoxicity and neuroinflammation.

CONCLUSIONS AND IMPLICATIONS:

These results suggest that pharmacological manipulation of CB2 receptor is a potential therapeutic strategy for the treatment of stress-related pathologies with a neuroinflammatory component, such as depression.”

http://www.ncbi.nlm.nih.gov/pubmed/24467609

Medical Marijuana Laws and Suicides by Gender and Age.

:American Journal of Public Health Logo

 

“We estimated the association between legalizing medical marijuana and suicides.

Legalization was associated with a 10.8%  and 9.4% reduction in the suicide rate of men aged 20 through 29 years and 30 through 39 years, respectively.

Suicides among men aged 20 through 39 years fell after medical marijuana legalization compared with those in states that did not legalize.

The negative relationship between legalization and suicides among young men is consistent with the hypothesis that marijuana can be used to cope with stressful life events.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4232164/

http://www.ncbi.nlm.nih.gov/pubmed/24432945

http://ajph.aphapublications.org/doi/10.2105/AJPH.2013.301612

“Legalizing Medical Marijuana May Lead To Fewer Suicides”  https://www.huffingtonpost.com/2014/02/04/marijuana-legalization-suicide_n_4726390.html

“Medical Marijuana Cuts Suicide Rates By 10% In Years Following Legalization”  http://www.medicaldaily.com/medical-marijuana-cuts-suicide-rates-10-years-following-legalization-268472

Therapeutic potential of cannabinoid medicines.

Drug Testing and Analysis

“Cannabis was extensively used as a medicine throughout the developed world in the nineteenth century but went into decline early in the twentieth century ahead of its emergence as the most widely used illicit recreational drug later that century. Recent advances in cannabinoid pharmacology alongside the discovery of the endocannabinoid system (ECS) have re-ignited interest in cannabis-based medicines.

The ECS has emerged as an important physiological system and plausible target for new medicines. Its receptors and endogenous ligands play a vital modulatory role in diverse functions including immune response, food intake, cognition, emotion, perception, behavioural reinforcement, motor co-ordination, body temperature, wake/sleep cycle, bone formation and resorption, and various aspects of hormonal control. In disease it may act as part of the physiological response or as a component of the underlying pathology.

In the forefront of clinical research are the cannabinoids delta-9-tetrahydrocannabinol and cannabidiol, and their contrasting pharmacology will be briefly outlined. The therapeutic potential and possible risks of drugs that inhibit the ECS will also be considered. This paper will then go on to review clinical research exploring the potential of cannabinoid medicines in the following indications: symptomatic relief in multiple sclerosis, chronic neuropathic pain, intractable nausea and vomiting, loss of appetite and weight in the context of cancer or AIDS, psychosis, epilepsy, addiction, and metabolic disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/24006213

http://onlinelibrary.wiley.com/doi/10.1002/dta.1529/abstract

The endocannabinoid system and its therapeutic exploitation.

Image result for Nat Rev Drug Discov.

“The term ‘endocannabinoid’ – originally coined in the mid-1990s after the discovery of membrane receptors for the psychoactive principle in Cannabis, Delta9-tetrahydrocannabinol and their endogenous ligands – now indicates a whole signalling system that comprises cannabinoid receptors, endogenous ligands and enzymes for ligand biosynthesis and inactivation. This system seems to be involved in an ever-increasing number of pathological conditions. With novel products already being aimed at the pharmaceutical market little more than a decade since the discovery of cannabinoid receptors, the endocannabinoid system seems to hold even more promise for the future development of therapeutic drugs. We explore the conditions under which the potential of targeting the endocannabinoid system might be realized in the years to come.”  http://www.ncbi.nlm.nih.gov/pubmed/15340387

http://www.nature.com/nrd/journal/v3/n9/full/nrd1495.html

Smoking Cannabis Reduces Pain, Helps Sleep And Improves Mood For Those With Chronic Symptoms

“For patients with chronic (long-term) neuropathic pain, smoking cannabis was found to reduce symptoms of pain, improve mood and help sleep, a report published in CMAJ (Canadian Medical Journal Association) revealed. When damage or dysfunction of the nervous system results in chronic neuropathic pain, patients have few treatment options, such as antidepressants, local anesthetics, anticonvulsants or opioids. However, these medications often have undesirable side effects and do not work for everybody.

The authors inform that oral cannabinoids have been effective in reducing the symptoms of some types of pain. However, they many have different effects and risks compared to smoked cannabis.

Investigators from McGill University Health Centre (MUHC) and McGill University carried out a randomized, controlled trial to determine the analgesic effect of smoked cannabis in 21 patients, aged 18 years or more, all of them with chronic neuropathic pain. THC levels (drug potencies) were divided into 2.5%, 6% and 9.4%. Some participants also received a placebo (0%).

The researchers inform that there was a correlation between increased THC content and better sleep quality. Symptoms of depression and/or anxiety were also reduced at 9.5% THC level.”

More: http://www.medicalnewstoday.com/articles/199376.php

Cannabinoids ameliorate impairments induced by chronic stress to synaptic plasticity and short-term memory.

“Repeated stress is one of the environmental factors that precipitates and exacerbates mental illnesses like depression and anxiety as well as cognitive impairments. We have previously shown that cannabinoids can prevent the effects of acute stress on learning and memory.

Here we aimed to find whether chronic cannabinoid treatment would alleviate the long-term effects of exposure to chronic restraint stress on memory and plasticity as well as on behavioral and neuroendocrine measures of anxiety and depression. Late adolescence rats were exposed to chronic restraint stress for two weeks followed each day by systemic treatment with vehicle or with the CB1/2 receptor agonist WIN55,212-2 (1.2 mg/kg). Thirty days after the last exposure to stress, rats demonstrated impaired long-term potentiation (LTP) in the ventral subiculum (vSub)-nucleus accumbens (NAc) pathway, impaired performance in the prefrontal cortex (PFC)-dependent object recognition task and the hippocampal-dependent spatial version of this task, increased anxiety levels, and significantly reduced expression of glucocorticoid receptors (GRs) in the amygdala, hippocampus, PFC and NAc. Chronic WIN55,212-2 administration prevented the stress-induced impairment in LTP levels and in the spatial task, with no effect on stress-induced alterations in unconditioned anxiety levels or GR levels. The CB1 antagonist AM251 (0.3 mg/kg) prevented the ameliorating effects of WIN55,212-2 on LTP and short-term memory. Hence, the beneficial effects of WIN55,212-2 on memory and plasticity are mediated by CB1 receptors and are not mediated by alterations in GR levels in the brain areas tested.

 Our findings suggest that cannabinoid receptor activation could represent a novel approach to the treatment of cognitive deficits that accompany a variety of stress-related neuropsychiatric disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/23426383