Cannabidiol: an overview of some pharmacological aspects.

“Over the past few years, considerable attention has focused on cannabidiol (CBD), a major nonpsychotropic constituent of cannabis.

The authors present a review on the chemistry of CBD and discuss the anticonvulsive, antianxiety, antipsychotic, antinausea, and antirheumatoid arthritic properties of CBD.

CBD does not bind to the known cannabinoid receptors, and its mechanism of action is yet unknown. It is possible that, in part at least, its effects are due to its recently discovered inhibition of anandamide uptake and hydrolysis and to its antioxidative effect.”

http://www.ncbi.nlm.nih.gov/pubmed/12412831

The cannabinoid receptor CB₁ inverse agonist AM251 potentiates the anxiogenic activity of urocortin I in the basolateral amygdala.

The basolateral amygdala is reported to play an important role in the neural bases of emotional processing… Based on these findings, we propose that urocortin and endocannabinoid signaling are part of an integrated neural axis modulating anxiety states within the basolateral amygdala. This article is part of a Special Issue entitled ‘Anxiety and Depression’.”

http://www.ncbi.nlm.nih.gov/pubmed/21736884

Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects.

115-11-cover

“Cannabis (marijuana, hashish, or cannabinoids) has been used for medical and recreational purposes for many centuries and is likely the only medicine or illicit drug that has constantly evoked tremendous interest or controversy within both the public domain and medical research. Cannabinoids appear to be able to modulate pain, nausea, vomiting, epilepsy, ischemic stroke, cerebral trauma, multiple sclerosis, tumors, and other disorders in humans and/or animals.

Cannabis acts on 2 types of cannabinoid receptors, the CB1 and CB2 receptors, which are distributed mainly in the brain and immune system, respectively. In the brain, CB1 receptors are also targeted by endogenous cannabinoids (i.e., endocannabinoids) such as anandamide (AEA), 2-arachidonylglycerol, and arachidonylethanolamide…

…since adult hippocampal neurogenesis is suppressed following chronic administration of opiates, alcohol, nicotine, and cocaine, the present study suggests that cannabinoids are the only illicit drug that can promote adult hippocampal neurogenesis following chronic administration…

Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects.”  

https://www.jci.org/articles/view/25509

“University Of Saskatchewan Research Suggests Marijuana Analogue Stimulates Brain Cell Growth”  http://www.sciencedaily.com/releases/2005/10/051016083817.htm

Central side-effects of therapies based on CB1 cannabinoid receptor agonists and antagonists: focus on anxiety and depression.

“Both agonists (e.g. Delta(9)-tetrahydrocannabinol, nabilone) and antagonists (e.g. rimonabant, taranabant) of the cannabinoid type-1 (CB(1)) receptor have been explored as therapeutic agents in diverse fields of medicine such as pain management and obesity with associated metabolic dysregulation, respectively. CB(1) receptors are widely distributed in the central nervous system and are involved in the modulation of emotion, stress and habituation responses, behaviours that are thought to be dysregulated in human psychiatric disorders. Accordingly, CB(1) receptor activation may, in some cases, precipitate episodes of psychosis and panic, while its inhibition may lead to behaviours reminiscent of depression and anxiety-related disorders. The present review discusses these side-effects, which have to be taken into account in the therapeutic exploitation of the endocannabinoid system.”

http://www.ncbi.nlm.nih.gov/pubmed/19285266

Inhibition of endocannabinoid catabolic enzymes elicits anxiolytic-like effects in the marble burying assay

“Cannabinoids have long been shown to have a range of potential therapeutic effects, including antiemetic actions, analgesia, and anxiolysis. These data indicate that elevation of AEA or 2-AG reduces marble burying behavior and suggest that their catabolic enzymes represent potential targets for the development of new classes of pharmacotherapeutics to treat anxiety-related disorders.

Marijuana is commonly smoked to reduce feelings of stress and anxiety… much interest has been generated by the discovery of the endogenous cannabinoid (i.e. endocannabinoid; eCB) system as a source of targets for the development of new therapeutic treatments of a range of ailments including anxiety and depression…”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3034086/

A role for cannabinoid CB1 receptors in mood and anxiety disorders.

“Mood and anxiety disorders, the most prevalent of the psychiatric disorders, cause immeasurable suffering worldwide. Despite impressive advances in pharmacological therapies, improvements in efficacy and side-effect profiles are needed. The present literature review examines the role that the endocannabinoid system may play in these disorders and the potential value of targeting this system in the search for novel and improved medications.

Cannabis and its major psychoactive component (-)-trans-delta9-tetrahydrocannabinol, have profound effects on mood and can modulate anxiety and mood states. Cannabinoid receptors and other protein targets in the central nervous system (CNS) that modulate endocannabinoid function have been described. The discovery of selective modulators of some of these sites that increase or decrease endocannabinoid neurotransmission, primarily through the most prominent of the cannabinoid receptors in the CNS, the CB1 receptors, combined with transgenic mouse technology, has enabled detailed investigations into the role of these CNS sites in the regulation of mood and anxiety states. Although data point to the involvement of the endocannabinoid system in anxiety states, the pharmacological evidence seems contradictory: both anxiolytic- and anxiogenic-like effects have been reported with both endocannabinoid neurotransmission enhancers and blockers.

Due to advances in the development of selective compounds directed at the CB1 receptors, significant progress has been made on this target. Recent biochemical and behavioural findings have demonstrated that blockade of CB1 receptors engenders antidepressant-like neurochemical changes (increases in extracellular levels of monoamines in cortical but not subcortical brain regions) and behavioural effects consistent with antidepressant/antistress activity in rodents.”

http://www.ncbi.nlm.nih.gov/pubmed/16148437

Cannabinoid-1 receptor: a novel target for the treatment of neuropsychiatric disorders.

“G-protein-coupled receptor (GPCR)-mediated signalling is the most widely used signalling mechanism in cells, and its regulation is important for various physiological functions. The cannabinoid-1 (CB(1)) receptor, a GPCR, has been shown to play a critical role in neural circuitries mediating motivation, mood and emotional behaviours.

 Several recent studies have indicated that impairment of CB(1) receptor-mediated signalling may play a critical role in the pathophysiology of various neuropsychiatric disorders. In this article, the authors briefly review literature relating to the role played by the endocannabinoid system in various neuropsychiatric disorders, and the CB(1) receptor as a potential therapeutic target for the treatment of alcoholism, depression, anxiety and schizophrenia.”

http://www.ncbi.nlm.nih.gov/pubmed/16548770

Endocannabinoid system dysfunction in mood and related disorders.

“The endocannabinoid (EC) system is widely distributed throughout the brain and modulates many functions. It is involved in mood and related disorders, and its activity may be modified by exogenous cannabinoids. This article examines the therapeutic potential of cannabinoids in psychiatric disorders.

We propose (hypothesize) that the EC system, which is homoeostatic in cortical excitation and inhibition, is dysfunctional in mood and related disorders. Anandamide, tetrahydrocannabinol (THC) and cannabidiol (CBD) variously combine antidepressant, antipsychotic, anxiolytic, analgesic, anticonvulsant actions, suggesting a therapeutic potential in mood and related disorders. Currently, cannabinoids find a role in pain control. Post mortem and other studies report EC system abnormalities in depression, schizophrenia and suicide. Abnormalities in the cannabinoid-1 receptor (CNR1) gene that codes for cannabinoid-1 (CB1) receptors are reported in psychiatric disorders. However, efficacy trials of cannabinoids in psychiatric disorders are limited but offer some encouragement.

CONCLUSION:

Research is needed to elucidate the role of the EC system in psychiatric disorders and for clinical trials with THC, CBD and synthetic cannabinoids to assess their therapeutic potential.”

http://www.ncbi.nlm.nih.gov/pubmed/21916860

Expression pattern of the cannabinoid receptor genes in the frontal cortex of mood disorder patients and mice selectively bred for high and low fear.

“Although the endocannabinoid system (ECS) has been implicated in brain development and various psychiatric disorders, precise mechanisms of the ECS on mood and anxiety disorders remain unclear. Here, we have investigated developmental and disease-related expression pattern of the cannabinoid receptor 1 (CB1) and the cannabinoid receptor 2 (CB2) genes in the dorsolateral prefrontal cortex (PFC) of humans. Using mice selectively bred for high and low fear, we further investigated potential association between fear memory and the cannabinoid receptor expression in the brain…

 These results suggest that the CB1 in the PFC may play a significant role in regulating mood and anxiety symptoms. Our study demonstrates the advantage of utilizing data from postmortem brain tissue and a mouse model of fear to enhance our understanding of the role of the cannabinoid receptors in mood and anxiety disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/22534181

Endocannabinoid system and mood disorders: Priming a target for new therapies.

“The endocannabinoid system (ECS), comprising two G protein-coupled receptors (the cannabinoid receptors 1 and 2 [CB1 and CB2] for marijuana’s psychoactive principle ∆(9)-tetrahydrocannabinol [∆(9)-THC]), their endogenous small lipid ligands (namely anandamide [AEA] and 2-arachidonoylglycerol [2-AG], also known as endocannabinoids), and the proteins for endocannabinoid biosynthesis and degradation, has been suggested as a pro-homeostatic and pleiotropic signaling system activated in a time- and tissue-specific way during physiopathological conditions. In the brain activation of this system modulates the release of excitatory and inhibitory neurotransmitters and of cytokines from glial cells. As such, the ECS is strongly involved in neuropsychiatric disorders, particularly in affective disturbances such as anxiety and depression. It has been proposed that synthetic molecules that inhibit endocannabinoid degradation can exploit the selectivity of endocannabinoid action, thus activating cannabinoid receptors only in those tissues where there is perturbed endocannabinoid turnover due to the disorder, and avoiding the potential side effects of direct CB1 and CB2 activation. However, the realization that endocannabinoids, and AEA in particular, also act at other molecular targets, and that these mediators can be deactivated by redundant pathways, has recently led to question the efficacy of such approach, thus opening the way to new multi-target therapeutic strategies, and to the use of non-psychotropic cannabinoids, such as cannabidiol (CBD), which act via several parallel mechanisms, including indirect interactions with the ECS. The state of the art of the possible therapeutic use of endocannabinoid deactivation inhibitors and phytocannabinoids in mood disorders is discussed in this review article.”

http://www.ncbi.nlm.nih.gov/pubmed/23261685