Ketamine-induced antidepressant like effects in mice: A possible involvement of cannabinoid system.

Biomedicine & Pharmacotherapy

“The purpose of this study was to explore the possible interaction between ketamine and cannabinoid system in the modulation of depression-related responses.

It seems that possible interaction between ketamine and cannabinoid system may modulate depression-related behavior.”

https://www.ncbi.nlm.nih.gov/pubmed/30970516

https://www.sciencedirect.com/science/article/pii/S0753332218375309?via%3Dihub

“Antidepressant-like effect of Δ9-tetrahydrocannabinol and other cannabinoids isolated from Cannabis sativa L” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2866040/

β-Caryophyllene, a Natural Sesquiterpene, Attenuates Neuropathic Pain and Depressive-Like Behavior in Experimental Diabetic Mice.

 View details for Journal of Medicinal Food cover image“Neuropathic pain (NP) is associated with chronic hyperglycemia and emotional disorders such as depression in diabetic patients, complicating the course of treatment. Drugs currently used to treat NP have undesirable side effects, so research on other natural sources has been required.

β-caryophyllene (BCP), a natural sesquiterpene found in some food condiments and considered an agonist to cannabinoid receptor type 2, could have potential therapeutic effects to treat conditions such as NP and emotional disorders. For this reason, we assessed whether BCP modulates nociception, anxiety, and depressive-like behavior in streptozotocin (STZ)-induced experimental diabetic BALB/c female mice.

BCP was orally chronic administrated (10 mg/kg/60 μL). Pain developed with STZ was evaluated with von Frey filament test, SMALGO®, and hot plate test. Anxiety and depression-like behavior were assessed by marbles test, forced swim test, and tail suspension test. BCP significantly reduced glycemia in experimental diabetic mice. The pain was also mitigated by BCP administration. Depression-like behavior assessed with tail suspension test was attenuated with orally chronic BCP administration. Substance P and cytokines such as interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), and interleukin-6 (IL-6) were also attenuated with BCP administration. NP was positively correlated with substance P and IL-6 and IL-1β release.

Our data using an orally chronic BCP administration in the STZ challenged mice to suggest that glycemia, diabetes-related NP, and depressive-like behavior could be prevented/reduced by dietary BCP.”

https://www.ncbi.nlm.nih.gov/pubmed/30864870

https://www.liebertpub.com/doi/10.1089/jmf.2018.0157

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”   http://www.ncbi.nlm.nih.gov/pubmed/23138934

“Beta-caryophyllene is a dietary cannabinoid.”   https://www.ncbi.nlm.nih.gov/pubmed/18574142

Hemisphere-dependent endocannabinoid system activity in prefrontal cortex and hippocampus of the Flinders Sensitive Line rodent model of depression.

Neurochemistry International“Altered endocannabinoid (eCB) signaling is suggested as an important contributor to the pathophysiology of depression.

In summary, our data suggest a decreased eCB signalling in the FSL rats, which could contribute to the depressive-like behaviour.

Interestingly, the altered eCB system activity appear to be hemisphere-specific in the limbic regions.

Our study support the existing literature and showed altered eCB system activity in this particular animal model of depression.”

https://www.ncbi.nlm.nih.gov/pubmed/30716357

https://www.sciencedirect.com/science/article/abs/pii/S0197018618305151?via%3Dihub

“Antidepressant-like effect of delta9-tetrahydrocannabinol and other cannabinoids isolated from Cannabis sativa L. Results of this study show that Delta(9)-THC and other cannabinoids exert antidepressant-like actions, and thus may contribute to the overall mood-elevating properties of cannabis.”   https://www.ncbi.nlm.nih.gov/pubmed/20332000

Cannabinoid receptor 2 activation mitigates lipopolysaccharide-induced neuroinflammation and sickness behavior in mice.

 Image result for psychopharmacology journal“Cannabinoid receptor 2 (CB2R) signaling in the brain is associated with the pathophysiology of depression.

Sickness behavior, characterized by lessened mobility, social interaction, and depressive behavior, is linked with neuroinflammation, oxidative stress, and immune system.

The present study was aimed at evaluating 1-phenylisatin (PI), a CB2R agonist, in sickness behavior.

Our data propose that acute and long-term activation of CB2R might prevent neuroinflammation and oxidative stress-associated sickness behavior.”

https://www.ncbi.nlm.nih.gov/pubmed/30666359

Cannabinoid CB1 receptors in the amygdalar cholecystokinin glutamatergic afferents to nucleus accumbens modulate depressive-like behavior.

 Image result for nature medicine“Major depressive disorder is a devastating psychiatric disease that afflicts up to 17% of the world’s population. Postmortem brain analyses and imaging studies of patients with depression have implicated basal lateral amygdala (BLA) dysfunction in the pathophysiology of depression. However, the circuit and molecular mechanisms through which BLA neurons modulate depressive behavior are largely uncharacterized. Here, in mice, we identified that BLA cholecystokinin (CCK) glutamatergic neurons mediated negative reinforcement via D2 medium spiny neurons (MSNs) in the nucleus accumbens (NAc) and that chronic social defeat selectively potentiated excitatory transmission of the CCKBLA-D2NAc circuit in susceptible mice via reduction of presynaptic cannabinoid type-1 receptor (CB1R). Knockdown of CB1R in the CCKBLA-D2NAc circuit elevated synaptic activity and promoted stress susceptibility. Notably, selective inhibition of the CCKBLA-D2NAc circuit or administration of synthetic cannabinoids in the NAc was sufficient to produce antidepressant-like effects. Overall, our studies reveal the circuit and molecular mechanisms of depression.”

https://www.ncbi.nlm.nih.gov/pubmed/30643290

https://www.nature.com/articles/s41591-018-0299-9

“Antidepressant-like effect of delta9-tetrahydrocannabinol and other cannabinoids isolated from Cannabis sativa L. Results of this study show that Delta(9)-THC and other cannabinoids exert antidepressant-like actions, and thus may contribute to the overall mood-elevating properties of cannabis.”  https://www.ncbi.nlm.nih.gov/pubmed/20332000

Structure of a Signaling Cannabinoid Receptor 1-G Protein Complex.

Image result for cell journal

“Cannabis elicits its mood-enhancing and analgesic effects through the cannabinoid receptor 1 (CB1), a G protein-coupled receptor (GPCR) that signals primarily through the adenylyl cyclase-inhibiting heterotrimeric G protein Gi. Activation of CB1-Gi signaling pathways holds potential for treating a number of neurological disorders and is thus crucial to understand the mechanism of Giactivation by CB1.

Here, we present the structure of the CB1-Gi signaling complex bound to the highly potent agonist MDMB-Fubinaca (FUB), a recently emerged illicit synthetic cannabinoid infused in street drugs that have been associated with numerous overdoses and fatalities.”

https://www.ncbi.nlm.nih.gov/pubmed/30639101

https://linkinghub.elsevier.com/retrieve/pii/S0092867418315654

“Antidepressant-like effect of delta9-tetrahydrocannabinol and other cannabinoids isolated from Cannabis sativa L. Results of this study show that Delta(9)-THC and other cannabinoids exert antidepressant-like actions, and thus may contribute to the overall mood-elevating properties of cannabis.”   https://www.ncbi.nlm.nih.gov/pubmed/20332000

Cannabis and Mood Disorders.

 “The present review will provide an overview of the neurobiology, epidemiology, clinical impact, and treatment of cannabis use disorder (CUD) in mood disorders.

Patients with mood disorders including major depressive disorder (MDD) and bipolar disorder (BD) have higher rates of cannabis use, and CUD compared to the general population. Reasons for this association are not clear, nor are the putative therapeutic effects of cannabis use, or its components delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), in these illnesses.

Cannabis use may be associated mood disorders, but more research is needed to increase our understanding of the mechanisms for this association, and to develop more effective treatments for this comorbidity.”

https://www.ncbi.nlm.nih.gov/pubmed/30643708

https://link.springer.com/article/10.1007%2Fs40429-018-0214-y

“Antidepressant-like effect of delta9-tetrahydrocannabinol and other cannabinoids isolated from Cannabis sativa L. Results of this study show that Delta(9)-THC and other cannabinoids exert antidepressant-like actions, and thus may contribute to the overall mood-elevating properties of cannabis.”   https://www.ncbi.nlm.nih.gov/pubmed/20332000

Culture and cannabinoid receptor gene polymorphism interact to influence the perception of happiness.

 Image result for plos one“Previous studies have shown that a cytosine (C) to thymine (T) single nucleotide polymorphism (SNP) of the human cannabinoid receptor 1 (CNR1) gene is associated with positive emotional processing.

C allele carriers are more sensitive to positive emotional stimuli including happiness. The effects of several gene polymorphisms related to sensitivity to emotional stimuli, such as that in the serotonin transporter gene-linked polymorphic region (5HTTLPR), on emotional processing have been reported to differ among cultures-e.g., between those that are independent and interdependent. Thus, we postulated that the effects of the CNR1 genotype on happiness might differ among different cultures because the concept of happiness varies by culture.

We recruited healthy male and female young adults in Japan, where favorable external circumstances determine the concept of happiness, and Canada, where the concept of happiness centers on positive inner feelings, and compared the effects of the CNR1 genotype on both subjective happiness levels (self-evaluation as being a happy person) and situation-specific happiness (happy feelings accompanying various positive events) by using a questionnaire.

We found that the effect of CNR1 on subjective happiness was different between the Japanese and Canadian groups. The subjective happiness level was the highest in Japanese individuals with the CC genotype, whereas in Canadian participants, it was the highest in individuals with the TT genotype. Furthermore, the effects of CNR1 genotype on situation-specific happiness were also different between the groups. Happiness accompanied with being surrounded by happy people was the highest among Japanese individuals with the CC genotype, whereas among Canadian individuals, it was the highest in TT genotype carriers.

These findings suggest that culture and CNR1 polymorphism interact to influence the perception of happiness.”

https://www.ncbi.nlm.nih.gov/pubmed/30576341

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0209552

“Genetic Variations in the Human Cannabinoid Receptor Gene Are Associated with Happiness” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3972248/

Effects of cannabidiol in males and females in two different rat models of depression.

Physiology & Behavior

“The current study explores the therapeutic potential of Cannabidiol (CBD), a compound in the Cannabis plant, using both sexes of 2 “depressive-like” genetic models, Wistar Kyoto (WKY) and Flinders Sensitive Line (FSL) rats. Rats ingested CBD (30 mg/kg) orally. In the saccharin preference test, following a previous report of a pro-hedonic effect of CBD in male WKY, we now found similar results in female WKY. CBD also decreased immobility in the forced swim test in males (both strains) and in female WKY. These findings suggest a role for CBD in treating mental disorders with prominent symptoms of helplessness and anhedonia.”

https://www.ncbi.nlm.nih.gov/pubmed/30571957

https://www.sciencedirect.com/science/article/abs/pii/S0031938418307509?via%3Dihub

An Analysis of Endocannabinoid Concentrations and Mood Following Singing and Exercise in Healthy Volunteers.

Image result for frontiers in behavioral neuroscience “The euphoric feeling described after running is, at least in part, due to increased circulating endocannabinoids (eCBs). eCBs are lipid signaling molecules involved in reward, appetite, mood, memory and neuroprotection.

The aim of this study was to investigate whether activities other than running can increase circulating eCBs.

Nine healthy female volunteers (mean 61 years) were recruited from a local choir. Circulating eCBs, haemodynamics, mood and hunger ratings were measured before and immediately after 30 min of dance, reading, singing or cycling in a fasted state.

Singing increased plasma levels of anandamide (AEA) by 42% (P < 0.05), palmitoylethanolamine (PEA) by 53% (P < 0.01) and oleoylethanolamine (OEA) by 34% (P < 0.05) and improved positive mood and emotions (P < 0.01), without affecting hunger scores.

Dancing did not affect eCB levels or hunger ratings, but decreased negative mood and emotions (P < 0.01).

Cycling increased OEA levels by 26% (P < 0.05) and tended to decrease how hungry volunteers felt, without affecting mood.

Reading increased OEA levels by 28% (P < 0.01) and increased the desire to eat.

Plasma AEA levels were positively correlated with how full participants felt (P < 0.05). Plasma OEA levels were positively correlated with positive mood and emotions (P < 0.01). All three ethanolamines were positively correlated with heart rate (HR; P < 0.0001).

These data suggest that activities other than running can increase plasma eCBs associated with changes in mood or appetite. Increases in eCBs may underlie the rewarding and pleasurable effects of singing and exercise and ultimately some of the long-term beneficial effects on mental health, cognition and memory.”

https://www.ncbi.nlm.nih.gov/pubmed/30534062

https://www.frontiersin.org/articles/10.3389/fnbeh.2018.00269/full