LH-21, A Peripheral Cannabinoid Receptor 1 Antagonist, Exerts Favorable Metabolic Modulation Including Antihypertensive Effect in KKAy Mice by Regulating Inflammatory Cytokines and Adipokines on Adipose Tissue.

Related image

“Patients with obesity are susceptible to hypertension and diabetes. Over-activation of cannabinoid receptor 1 (CB1R) in adipose tissue is proposed in the pathophysiology of metabolic disorders, which led to the metabolic dysfunction of adipose tissue and deregulated production and secretion of adipokines.

In the current study, we determined the impact of LH-21, a representative peripheral CB1R antagonist, on the obesity-accompanied hypertension and explored the modulatory action of LH-21 on the adipose tissue in genetically obese and diabetic KKAy mice.

3-week LH-21 treatment significantly decreased blood pressure with a concomitant reduction in body weight, white adipose tissue (WAT) mass, and a slight loss on food intake in KKAy mice. Meanwhile, glucose handling and dyslipidemia were also markedly ameliorated after treatment. Gene expression of pro-inflammatory cytokines in WAT and the aortae were both attenuated apparently by LH-21, as well the mRNA expression of adipokines (lipocalin-2, leptin) in WAT. Concomitant amelioration on the accumulation of lipocalin-2 was observed in both WAT and aortae. In corresponding with this, serum inflammatory related cytokines (tumor necrosis factor α, IL-6, and CXCL1), and lipocalin-2 and leptin were lowered notably.

Thus according to current results, it can be concluded that the peripheral CB1R antagonist LH-21 is effective in managing the obesity-accompanied hypertension in KKAy mice. These metabolic benefits are closely associated with the regulation on the production and secretion of inflammatory cytokines and adipokines in the WAT, particularly alleviated circulating lipocalin-2 and its accumulation in aortae.”

https://www.ncbi.nlm.nih.gov/pubmed/29731737

https://www.frontiersin.org/articles/10.3389/fendo.2018.00167/full

Cannabinoid Type 1 Receptors are Upregulated During Acute Activation of Brown Adipose Tissue.

Diabetes

“Activating brown adipose tissue (BAT) could provide a potential approach for the treatment of obesity and metabolic disease in humans.

Obesity is associated with up-regulation of the endocannabinoid system, and blocking the cannabinoid type 1 receptor (CB1R) has been shown to cause weight loss and decrease cardiometabolic risk factors. These effects may partly be mediated via increased BAT metabolism, since there is evidence that CB1R antagonism activates BAT in rodents.

To investigate the significance of CB1R in BAT function, we quantified the density of CB1R in human and rodent BAT using the positron emission tomography (PET) radioligand [18F]FMPEP-d2 , and in parallel measured BAT activation with the glucose analogue [18F]FDG. Activation by cold exposure markedly increased CB1R density and glucose uptake in BAT of lean men. Similarly, β3-receptor agonism increased CB1R density in BAT of rats.

In contrast, overweight men with reduced BAT activity exhibited decreased CB1R in BAT, reflecting impaired endocannabinoid regulation. Image-guided biopsies confirmed CB1R mRNA expression in human BAT. Furthermore, CB1R blockade increased glucose uptake and lipolysis of brown adipocytes.

Our results highlight that CB1Rs are significant for human BAT activity, and the CB1R provide a novel therapeutic target for BAT activation in humans.”

Cannabinoids in health and disease: pharmacological potential in metabolic syndrome and neuroinflammation.

 

Image result for Horm Mol Biol Clin Investig

“The use of different natural and/or synthetic preparations of Cannabis sativa is associated with therapeutic strategies for many diseases. Indeed, thanks to the widespread diffusion of the cannabinoidergic system in the brain and in the peripheral districts, its stimulation, or inhibition, regulates many pathophysiological phenomena.

In particular, central activation of the cannabinoidergic system modulates the limbic and mesolimbic response which leads to food craving.

Moreover, cannabinoid agonists are able to reduce inflammatory response.

In this review a brief history of cannabinoids and the protagonists of the endocannabinoidergic system, i.e. synthesis and degradation enzymes and main receptors, will be described. Furthermore, the pharmacological effects of cannabinoids will be outlined. An overview of the involvement of the endocannabinoidergic system in neuroinflammatory and metabolic pathologies will be made.

Finally, particular attention will also be given to the new pharmacological entities acting on the two main receptors, cannabinoid receptor type 1 (CB1) and cannabinoid receptor type 2 (CB2), with particular focus on the neuroinflammatory and metabolic mechanisms involved.”

Absence of cannabinoid 1 receptor in beta cells protects against high-fat/high-sugar diet-induced beta cell dysfunction and inflammation in murine islets.

Diabetologia

“The cannabinoid 1 receptor (CB1R) regulates insulin sensitivity and glucose metabolism in peripheral tissues. CB1R is expressed on pancreatic beta cells and is coupled to the G protein Gαi, suggesting a negative regulation of endogenous signalling in the beta cell.

To assess the direct contribution of beta cell CB1R to metabolism, we designed a mouse model that allows us to determine the role of CB1R specifically in beta cells in the context of whole-body metabolism.

CONCLUSIONS/INTERPRETATION:

Our data demonstrate CB1R to be a negative regulator of beta cell function and a mediator of islet inflammation under conditions of metabolic stress. Our findings point to beta cell CB1R as a therapeutic target, and broaden its potential to include anti-inflammatory effects in both major forms of diabetes.”

https://www.ncbi.nlm.nih.gov/pubmed/29497784

https://link.springer.com/article/10.1007%2Fs00125-018-4576-4

Time-dependent effect of phytocannabinoid treatments in fat cells.

Image result for Phytother Res

“The objectives of this paper is to investigate, demonstrate, and compare the mechanism of action of phytocannabinoids as antidiabetic and anti-obesity agents in preadipocytes and adipocytes, relative to rosiglitazone and metformin.

Briefly, cannabis extract, Δ9 -tetrahydrocannabinol and cannabidiol (in very low dosages) were shown to promote glucose uptake higher or to equivalent levels, reduce fat accumulation, and reverse the insulin-resistant state of 3T3-L1 cells more effectively, relative to rosiglitazone and metformin. The phytocannabinoids had a more pronounced effect in preadipocytes undifferentiated model rather than the differentiated model. They induced a protective effect at the mitochondrial level by preventing overactivity of the succinate dehydrogenase pathway (p < .01), unlike rosiglitazone, through activation of the glycerol-3-phosphate dehydrogenase shuttling system. An increase in oxygen consumption and an increased expression of beta to alpha adrenoceptors (p < .05) in treated cells were noted.

These findings contribute toward understanding the mechanism of action of phytocannabinoids in fat cells and highlight the antidiabetic and anti-obesity properties of various phytocannabinoids that could potentially support the treatment of obesity-related insulin resistance.”

https://www.ncbi.nlm.nih.gov/pubmed/29464872

Changes in the Peripheral Endocannabinoid System as a Risk Factor for the Development of Eating Disorders.

Image result for Endocr Metab Immune Disord Drug Targets.

“Eating Disorder (ED) is characterized by persistently and severely disturbed eating behaviours. They arise from a combination of long-standing behavioural, emotional, psychological, interpersonal, and social factors and result in insufficient nutrient ingestion and/or adsorption. The three main EDs are: anorexia nervosa, bulimia nervosa, and binge eating disorder. We review the role of peripheral endocannabinoids in eating behaviour.

DISCUSSION:

The neuronal pathways involved in feeding behaviours are closely related to catecholaminergic, serotoninergic and peptidergic systems. Accordingly, feeding is promoted by serotonin, dopamine, and prostaglandin and inhibited by neuropeptide Y, norepinephrine, GABA, and opioid peptides. The endocannabinoid system plays a role in EDs, and multiple lines of evidence indicate that the cannabinoid signalling system is a key modulatory factor of the activity in the brain areas involved in EDs as well as in reward processes.

CONCLUSION:

Besides their central role in controlling food behaviours, peripheral cannabinoids are also involved in regulating adipose tissue and insulin signalling as well as cell metabolism in peripheral tissues such as liver, pancreas, fatty tissue, and skeletal muscle. Altogether, these data indicate that peripheral cannabinoids can provide new therapeutic targets not only for EDs but also for metabolic disease.”

https://www.ncbi.nlm.nih.gov/pubmed/29437028

Blockade of cannabinoid 1 receptor improves glucose responsiveness in pancreatic beta cells.

Journal of Cellular and Molecular Medicine

“Cannabinoid 1 receptors (CB1Rs) are expressed in peripheral tissues, including islets of Langerhans, where their function(s) is under scrutiny. Using mouse β-cell lines, human islets and CB1R-null (CB1R-/- ) mice, we have now investigated the role of CB1Rs in modulating β-cell function and glucose responsiveness. Synthetic CB1R agonists diminished GLP-1-mediated cAMP accumulation and insulin secretion as well as glucose-stimulated insulin secretion in mouse β-cell lines and human islets. In addition, silencing CB1R in mouse β cells resulted in an increased expression of pro-insulin, glucokinase (GCK) and glucose transporter 2 (GLUT2), but this increase was lost in β cells lacking insulin receptor. Furthermore, CB1R-/- mice had increased pro-insulin, GCK and GLUT2 expression in β cells. Our results suggest that CB1R signalling in pancreatic islets may be harnessed to improve β-cell glucose responsiveness and preserve their function. Thus, our findings further support that blocking peripheral CB1Rs would be beneficial to β-cell function in type 2 diabetes.”

https://www.ncbi.nlm.nih.gov/pubmed/29431265

http://onlinelibrary.wiley.com/doi/10.1111/jcmm.13523/abstract

Inhibition of aldose reductase activity by Cannabis sativa chemotypes extracts with high content of cannabidiol or cannabigerol.

Cover image

“Aldose reductase (ALR2) is a key enzyme involved in diabetic complications and the search for new aldose reductase inhibitors (ARIs) is currently very important.

The synthetic ARIs are often associated with deleterious side effects and medicinal and edible plants, containing compounds with aldose reductase inhibitory activity, could be useful for prevention and therapy of diabetic complications.

Non-psychotropic phytocannabinoids exert multiple pharmacological effects with therapeutic potential in many diseases such as inflammation, cancer, diabetes.

Here, we have investigated the inhibitory effects of extracts and their fractions from two Cannabis sativa L. chemotypes with high content of cannabidiol (CBD)/cannabidiolic acid (CBDA) and cannabigerol (CBG)/cannabigerolic acid (CBGA), respectively, on human recombinant and pig kidney aldose reductase activity in vitro.

A molecular docking study was performed to evaluate the interaction of these cannabinoids with the active site of ALR2 compared to known ARIs. The extracts showed significant dose-dependent aldose reductase inhibitory activity (>70%) and higher than fractions.

The inhibitory activity of the fractions was greater for acidic cannabinoid-rich fractions. Comparative molecular docking results have shown a higher stability of the ALR2-cannabinoid acids complex than the other inhibitors.

The extracts of Cannabis with high content of non-psychotropic cannabinoids CBD/CBDA or CBG/CBGA significantly inhibit aldose reductase activity.

These results may have some relevance for the possible use of C. sativa chemotypes based preparations as aldose reductase inhibitors.”

https://www.ncbi.nlm.nih.gov/pubmed/29427593

https://www.sciencedirect.com/science/article/pii/S0367326X17317598

“Dietary sources of aldose reductase inhibitors: prospects for alleviating diabetic complications.” https://www.ncbi.nlm.nih.gov/pubmed/19114390

“Edible vegetables as a source of aldose reductase differential inhibitors.”  https://www.ncbi.nlm.nih.gov/pubmed/28159579

Cannabinoid Receptors in Diabetic Kidney Disease.

 Current Diabetes Reports

“The purpose of this review is to examine and summarize studies assessing the relevance of the endocannabinoid system (ECS) in diabetic kidney disease (DKD).

Endocannabinoids and endocannabinoid receptors of type 1 (CB1R) and of type 2 (CB2R) are present in the normal kidney. Expression of CB1R and CB2R is altered in experimental DKD.

Studies in experimental animals and cultured kidney cells show a beneficial effect of peripheral CB1R blockade and CB2R activation in DKD and an even greater efficacy of a combined treatment.

Preclinical studies confirm that both CB1R and CB2R are implicated in the pathogenesis of DKD and may represent novel targets for treatment.”

https://www.ncbi.nlm.nih.gov/pubmed/29399721

The therapeutic potential of targeting the peripheral endocannabinoid/CB1 receptor system.

European Journal of Internal Medicine

“Endocannabinoids (eCBs) are internal lipid mediators recognized by the cannabinoid-1 and -2 receptors (CB1R and CB2R, respectively), which also mediate the different physiological effects of marijuana. The endocannabinoid system, consisting of eCBs, their receptors, and the enzymes involved in their biosynthesis and degradation, is present in a vast number of peripheral organs. In this review we describe the role of the eCB/CB1R system in modulating the metabolism in several peripheral organs. We assess how eCBs, via activating the CB1R, contribute to obesity and regulate food intake. In addition, we describe their roles in modulating liver and kidney functions, as well as bone remodeling and mass. Special importance is given to emphasizing the efficacy of the recently developed peripherally restricted CB1R antagonists, which were pre-clinically tested in the management of energy homeostasis, and in ameliorating both obesity- and diabetes-induced metabolic complications.”

https://www.ncbi.nlm.nih.gov/pubmed/29336868