The endocannabinoid system: novel pathway for cardiometabolic Risk-factor reduction.

“Although rimonabant has been approved for use in several countries, the Food and Drug Administration has expressed concern about the potential for adverse neurologic and psychiatric effects, considering the widespread distribution of CB1 receptors in the brain. While more research is clearly needed, the clinical evidence shows that CB1-receptor blockade with rimonabant improves multiple cardiovascular and metabolic variables, including body weight and waist circumference, HDL-C, triglycerides, and glucose metabolism. Furthermore, these effects, which are probably mediated by both peripheral and central actions in the ECS, appear to be greater than the improvements that would be expected from weight loss alone. There are multiple ongoing and planned studies with rimonabant as well as several other CB-receptor blockers (e.g., taranabant, CP-945,598). While diet and exercise are the cornerstones of cardiometabolic risk-factor reduction, improved pharmacotherapies are urgently needed. The ECS has provided us with new insights and a promising new avenue for the management of obesity and its associated cardiometabolic risk factors.”

http://www.ncbi.nlm.nih.gov/pubmed/18047036

The endocannabinoid system: potential for reducing cardiometabolic risk.

“The endocannabinoid system (ECS) affects multiple metabolic pathways in the brain and other organs. The transmembrane CB receptors were cloned in the early 1990s, followed shortly thereafter by the discovery of endogenous ligands, now known as endocannabinoids.

Three general types of cannabimimetic compounds have been described: herbal CBs, which occur uniquely in the cannabis plant (Cannabis sativa); endogenous CBs (or endocannabinoids), which are produced in the brain and peripheral tissues; and synthetic CBs, which are functionally similar compounds synthesized in the laboratory.

Obesity is associated with increased risk for insulin resistance, type 2 diabetes, nonalcoholic fatty liver disease, atherogenic dyslipidemia, and cardiovascular disease. Recent studies indicate that the body protects itself from weight loss by lowering energy expenditure. Both energy consumption and energy expenditure are regulated by hormones from a number of organs that act on the brain, as well as neural signals emanating from the brain itself.

Lifestyle modification is the initial intervention for obesity, with emphasis on reducing calorie intake and increasing physical activity; pharmacotherapy may be indicated for certain cardiovascular and metabolic risk factors.

This review focuses on the link between the biology of the cannabinoid receptor type 1 (CB1 receptor) system and body-weight regulation, as well as clinical data from studies of the first CB1 receptor antagonist…”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905146/

Vaccenic acid suppresses intestinal inflammation by increasing the endocannabinoid anandamide and non-cannabinoid signaling molecules in a rat model of the metabolic syndrome.

“Vaccenic acid (VA), the predominant ruminant-derived trans fat in the food chain, ameliorates hyperlipidemia yet mechanisms remain elusive. We investigated whether VA could influence tissue endocannabinoids (EC) by altering the availability of their biosynthetic precursor, arachidonic acid (AA) in membrane phospholipids (PL).

Interestingly, VA increased jejunal concentrations of anandamide and those of the non-cannabinoid signaling molecules, oleoylethanolamide and palmitoylethanolamide, relative to CD (P<0.05). This was consistent with a lower jejunal protein abundance (but not activity) of their degrading enzyme, fatty acid amide hydrolase and mRNA expression TNFα and IL-1β (P<0.05).

The ability of VA to reduce 2-AG in the liver and VAT provides a potential mechanistic explanation to alleviate ectopic lipid accumulation. The opposing regulation of EC and other non-cannabinoid lipid signaling molecules by VA suggests an activation of benefit via the EC system in the intestine.”

http://www.ncbi.nlm.nih.gov/pubmed/26891736

Cannabinoids and autoimmune diseases: A systematic review.

“Cannabinoids have shown to have a variety effects on body systems. Through CB1 and CB2 receptors, amongst other, they exert an effect by modulating neurotransmitter and cytokine release.

Current research in the role of cannabinoids in the immune system shows that they possess immunosuppressive properties. They can inhibit proliferation of leucocytes, induce apoptosis of T cells and macrophages and reduce secretion of pro-inflammatory cytokines.

In mice models, they are effective in reducing inflammation in arthritis, multiple sclerosis, have a positive effect on neuropathic pain and in type 1 diabetes mellitus.

They are effective as treatment for fibromyalgia and have shown to have anti-fibrotic effect in scleroderma.

Studies in human models are scarce and not conclusive and more research is required in this field.

Cannabinoids can be therefore promising immunosuppressive and anti-fibrotic agents in the therapy of autoimmune disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/26876387

http://www.thctotalhealthcare.com/category/autoimmune-disease/

Cannabinoid receptor type 1 mediates high-fat diet-induced insulin resistance by increasing forkhead box O1 activity in a mouse model of obesity.

“Hepatic glucose production is promoted by forkhead box O1 (FoxO1) under conditions of insulin resistance.

The overactivity of cannabinoid receptor type 1 (CB1R) partly causes increased liver fat deposits and metabolic dysfunction in obese rodents by decreasing mitochondrial function.

The aim of the present study was to investigate the role of FoxO1 in CB1R-mediated insulin resistance through the dysregulation of mitochondrial function in the livers of mice with high-fat diet (HFD)-induced obesity.

Taken together, our findings suggest that the anti-insulin resistance effect of AM251, which leads to an improvement of mitochondrial function in hepatic steatosis, is mediated through FoxO1.”

http://www.ncbi.nlm.nih.gov/pubmed/26847930

CB1 receptor blockade counters age-induced insulin resistance and metabolic dysfunction.

“The endocannabinoid system can modulate energy homeostasis by regulating feeding behaviour as well as peripheral energy storage and utilization.

Importantly, many of its metabolic actions are mediated through the cannabinoid type 1 receptor (CB1R), whose hyperactivation is associated with obesity and impaired metabolic function.

Herein, we explored the effects of administering rimonabant, a selective CB1R inverse agonist, upon key metabolic parameters in young (4 month old) and aged (17 month old) adult male C57BL/6 mice…

Collectively, our findings indicate a key role for CB1R in aging-related insulin resistance and metabolic dysfunction and highlight CB1R blockade as a potential strategy for combating metabolic disorders associated with aging.”

http://www.ncbi.nlm.nih.gov/pubmed/26757949

Beneficial effects of a Cannabis sativa extract treatment on diabetes-induced neuropathy and oxidative stress.

“Neuropathy is the most common complication of diabetes and it is still considered to be relatively refractory to most of the analgesics. The aim of the present study was to explore the antinociceptive effect of a controlled cannabis extract (eCBD) in attenuating diabetic neuropathic pain.

These findings highlighted the beneficial effects of cannabis extract treatment in attenuating diabetic neuropathic pain, possibly through a strong antioxidant activity and a specific action upon nerve growth factor.”

http://www.ncbi.nlm.nih.gov/pubmed/19441010

Therapy with a Selective Cannabinoid Receptor Type 2 Agonist Limits Albuminuria and Renal Injury in Mice with Type 2 Diabetic Nephropathy.

“A critical involvement of the endocannabinoid/cannabinoid receptor system in diabetes and its complications has been recognized.

Experimental evidence suggested that activation of the cannabinoid receptor type 2 (CB2), which is expressed in the kidney by podocytes and inflammatory cells, had a protective role in early streptozotocin-induced type 1 diabetes in mice.

In this study, we investigated the effects of a CB2 agonist given at a phase of overt disease on renal functional and structural changes in BTBR ob/ob mice, a model of type 2 diabetic nephropathy.

These results suggest that CB2 agonism is a potential option to be added to the available therapeutic armamentarium for type 2 diabetic nephropathy.”

http://www.ncbi.nlm.nih.gov/pubmed/26646377

Self-Medication of Somatic and Psychiatric Conditions Using Botanical Marijuana.

“As a complement to research evaluating botanical marijuana as a medical therapy for various somatic and psychiatric conditions, there is a growing body of research assessing marijuana users’ self-reports of the symptoms and conditions for which they use marijuana without a physician’s recommendation.

As part of two larger web-based surveys and one in-situ survey at an outdoor marijuana festival, we asked regular marijuana users if they consumed the drug without a physician’s recommendation and, if so, to describe (or select from a checklist) the conditions for which they used marijuana as a medication.

Participants reported using marijuana to self-medicate a wide variety of both somatic conditions (such as pain, diabetes, and irritable bowel syndrome) and psychiatric conditions (such as depression, anxiety, and insomnia).

Because fewer than half of the American states, and only a few countries, allow physicians to recommend medicinal marijuana, these findings may be of interest to clinicians as they treat patients, to lawmakers and policymakers as they consider legislation allowing physicians to recommend botanical marijuana for somatic and psychiatric conditions, and to researchers evaluating conditions that individuals elect to self-medicate using botanical marijuana.”

http://www.ncbi.nlm.nih.gov/pubmed/26595140

Controlled downregulation of the cannabinoid CB1 receptor provides a promising approach for the treatment of obesity and obesity-derived type 2 diabetes.

“Increased activity of the endocannabinoid system has emerged as a pathogenic factor in visceral obesity, which is a risk factor for type 2 diabetes mellitus (T2DM).

The endocannabinoid system is composed of at least two G-protein-coupled receptors (GPCRs), the cannabinoid receptor type 1 (CB1), and the cannabinoid receptor type 2 (CB2).

Downregulation of CB1 activity in rodents and humans has proven efficacious to reduce food intake, abdominal adiposity, fasting glucose levels, and cardiometabolic risk factors.

Unfortunately, downregulation of CB1 activity by universally active CB1 inverse agonists has been found to elicit psychiatric side effects, which led to the termination of using globally active CB1 inverse agonists to treat diet-induced obesity.

Interestingly, preclinical studies have shown that downregulation of CB1 activity by CB1 neutral antagonists or peripherally restricted CB1 inverse agonists provided similar anorectic effects and metabolic benefits without psychiatric side effects seen in globally active CB1 inverse agonists.

Furthermore, downregulation of CB1 activity may ease endoplasmic reticulum and mitochondrial stress which are contributors to obesity-induced insulin resistance and type 2 diabetes.

This suggests new approaches for cannabinoid-based therapy in the management of obesity and obesity-related metabolic disorders including type 2 diabetes.”

http://www.ncbi.nlm.nih.gov/pubmed/26498013