Cannabis Use and Reduced Risk of Insulin Resistance in HIV-HCV Infected Patients: A Longitudinal Analysis (ANRS CO13 HEPAVIH).

“Diabetes and insulin resistance (IR) is common in human immunodeficiency virus-hepatitis C virus (HIV-HCV)-coinfected patients…

Cannabis has been associated with reduced IR risk in some population-based surveys.

We determined whether cannabis use was consistently associated with reduced IR risk in HEPAVIH, a French nationwide cohort of HIV-HCV-coinfected patients…

Cannabis use is associated with a lower IR risk in HIV-HCV-coinfected patients.

The benefits of cannabis-based pharmacotherapies for patients concerned with increased risk of IR and diabetes need to be evaluated in clinical research and practice.”

http://www.ncbi.nlm.nih.gov/pubmed/25778750

Brief Report: Cannabis Smoking and Diabetes Mellitus: Results from Meta-analysis with Eight Independent Replication Samples.

“Recently active cannabis smoking and diabetes mellitus are inversely associated…

…but there now is a more stable evidence base for new lines of clinical translational research on a possibly protective cannabis smoking-diabetes mellitus association suggested in prior research.”

http://www.ncbi.nlm.nih.gov/pubmed/25978795

http://www.thctotalhealthcare.com/category/diabetes/

 

Role of the Endocannabinoid System in Diabetes and Diabetic Complications.

“Increasing evidence suggests that an overactive endocannabinoid system (ECS) may contribute to the development of diabetes by promoting energy intake and storage, impairing both glucose and lipid metabolism, and by exerting pro-apoptotic effects in pancreatic β cells, and by facilitating inflammation in pancreatic islets.

Furthermore, hyperglycemia associated with diabetes has also been implicated in triggering perturbations of the ECS amplifying the above mentioned pathological processes, eventually culminating in a vicious circle.

Compelling evidence from preclinical studies indicates that the ECS also influences diabetes-induced oxidative stress, inflammation, fibrosis, and subsequent tissue injury in target organs for diabetic complications.

In this review, we provide an update on the contribution of the ECS to the pathogenesis of diabetes and diabetic microvascular (retinopathy, nephropathy, and neuropathy) and cardiovascular complications. The therapeutic potential of targeting the ECS is also discussed.”

http://www.ncbi.nlm.nih.gov/pubmed/26076890#

http://www.thctotalhealthcare.com/category/diabetes/

Neuroprotective effects of cannabidiol in endotoxin-induced uveitis: critical role of p38 MAPK activation.

“Degenerative retinal diseases are characterized by inflammation and microglial activation.

The nonpsychoactive cannabinoid, cannabidiol (CBD), is an anti-inflammatory in models of diabetes and glaucoma.

We tested the hypothesis that retinal inflammation and microglia activation are initiated and sustained by oxidative stress and p38 mitogen-activated protein kinase (MAPK) activation, and that CBD reduces inflammation by blocking these processes…

Retinal inflammation and degeneration in uveitis are caused by oxidative stress.

CBD exerts anti-inflammatory and neuroprotective effects by a mechanism that involves blocking oxidative stress and activation of p38 MAPK and microglia.”

http://www.ncbi.nlm.nih.gov/pubmed/19052649

Neuroprotective and blood-retinal barrier-preserving effects of cannabidiol in experimental diabetes.

“Cannabinoids are known to possess therapeutic properties including inhibition of oxidation, NMDA receptor-activation, and inflammation.

The present study evaluates the ability of CBD to reduce oxidative stress, preserve BRB function, and prevent neural cell death in experimental diabetes…

These results demonstrate that CBD treatment reduces neurotoxicity, inflammation, and BRB breakdown in diabetic animals through activities that may involve inhibition of p38 MAP kinase.

The nonpsychotropic CBD is a promising candidate for anti-inflammatory and neuroprotective therapeutics.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1592672/

http://www.thctotalhealthcare.com/category/diabetes/

Cannabis Smoking and Diabetes Mellitus: Results from Meta-analysis with Eight Independent Replication Samples.

“Epidemiologic data, suggest an inverse cannabis smoking-diabetes mellitus association.

RESULTS:

Recently active cannabis smoking and diabetes mellitus are inversely associated. The meta-analytic summary odds ratio is 0.7 (95% confidence interval = 0.6, 0.8).

CONCLUSIONS:

Current evidence is too weak for causal inference, but there now is a more stable evidence base for new lines of clinical translational research on a possibly protective (or spurious) cannabis smoking-diabetes mellitus association suggested in prior research.”

http://www.ncbi.nlm.nih.gov/pubmed/25978795

http://www.thctotalhealthcare.com/category/diabetes/

Cannabinoid-mediated modulation of neuropathic pain and microglial accumulation in a model of murine type I diabetic peripheral neuropathic pain.

Logo of molpain

“Despite the frequency of diabetes mellitus and its relationship to diabetic peripheral neuropathy (DPN) and neuropathic pain (NeP), our understanding of underlying mechanisms leading to chronic pain in diabetes remains poor.

Recent evidence has demonstated a prominent role of microglial cells in neuropathic pain states.

One potential therapeutic option gaining clinical acceptance is the cannabinoids, for which cannabinoidreceptors (CB) are expressed on neurons and microglia. We studied the accumulation and activation of spinal and thalamic microglia in streptozotocin (STZ)-diabetic CD1 mice and the impact of cannabinoid receptor agonism/antagonism during the development of a chronic NeP state.

The prevention of microglial accumulation and activation in the dorsal spinal cord was associated with limited development of a neuropathic pain state.

Cannabinoids demonstrated antinociceptive effects in this mouse model of DPN.

These results suggest that such interventions may also benefit humans with DPN, and their early introduction may also modify the development of the NeP state.”  http://www.ncbi.nlm.nih.gov/pubmed/20236533

“Tetrahydrocannabinol (THC), a component in marijuana, acts at both CB1 and CB2 receptors, but other forms of cannabinoids such as cannabinol and cannabidiol act predominantly at CB2 receptors. Such CB2 agonists may be potential anti-inflammatory therapies, antagonizing the 2-AG-induced recruitment of microglia and impacting upon development of an inflammatory state. Such properties may permit the cannabinoids to act in the prevention of microglial activation, perhaps limiting the development of neuropathic pain.

The present data confirm the efficacy of cannabinoid agonists, both for the CB1 and CB2 receptor, in modulation of acute thermal and tactile hypersensitivity as features of neuropathic pain. Furthermore, CB1 agonism from the onset of the offending stimulus (diabetes) normally leading to neuropathic pain ameliorated the development of a neuropathic pain state.”  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845559/

http://www.thctotalhealthcare.com/category/neuropathic-pain/

 

Israeli-American Team Hopes to Cure Diabetes With Cannabis

israel diabetes

“An American-Israeli biotech team is taking cannabis research to the next level by developing novel therapies using cannabis extract to treat diabetes, inflammatory conditions, chronic pain and cardiovascular disease.

ISA Scientific just signed a deal with Yissum, the technology-transfer company of the Hebrew University of Jerusalem, Hadasit, the technology-transfer company of the Hadassah Medical Organization in Jerusalem, and the Kennedy Trust for Rheumatology Research (KIR) in the United Kingdom to help bring the drugs to market.

All the credit for the idea, however, goes to a Hebrew University researcher who has worked on idea for years.

“Raphael Mechoulam deserves all the credit for this,” fellow researcher Chaim Lotan of Hadassah University Medical Center said.

Mechoulam discovered that cannabidiol (CBD) receptors existed not only in the brain but in other tissues found throughout the body.

Knowing this, he then went to work finding a way to alter cannabinoids to work on certain areas of the body.

“He synthesized a whole ‘family’ of cannabinoids, and therefore with some changes in molecular structure you can tailor cannabinoids to different receptors,” Lotan said.

Lotan, a cardiologist, helped work on making a drug for the heart.

“My role was only the cardiac part,” he explained “but we may see effects in other organs as well since we found so many receptors.”

The team is now ready for Phase 2 trials of the drug for diabetes and chronic pain and is hopeful that the drug, which has now psychoactive properties at all, will ultimately provide a solution that may not only manage diabetes but perhaps even cure the widespread disease.

“Unlike insulin and other existing medications for diabetes, CBD may actually suppress, reverse and perhaps cure the disease,” ISA Scientific Chief Executive Officer Mark J. Rosenfeld said. “So, the therapeutic alternatives offered by cannabis chemistry could go far in helping to resolve conditions responsible for a huge public health crisis in China and elsewhere.””

http://www.jspacenews.com/israeli-american-team-hopes-cure-diabetes-cannabis/

http://www.thctotalhealthcare.com/category/diabetes/

Inhaled cannabis reduces pain in diabetic peripheral neuropathy patients, study suggests

“A small study finds that inhaling cannabis could demonstrate a dose-dependent pain reduction in patients with diabetic peripheral neuropathy.

Researchers at the University of California, United States conducted a study in which 16 patients with painful diabetic peripheral neuropathy were given placebo, or single doses of cannabis.

These doses were either low (one per cent tetrahydrocannibinol, THC), medium (four per cent THC) or high (seven per cent THC).

Tests were first performed on baseline spontaneous pain, evoked pain and cognitive function. Subsequently, participants either inhaled the cannabis or placebo, with measurements of pain intensity and cognitive function assessed over a three-hour period.

The higher the content of THC participants inhaled, the less pain they felt. The high dose of THC had a significant effect when researchers evoked pain using foam brush and von Frey.

These are tools used to test neuropathic pain in patients – von Frey are a set of filaments that test the pain of a patients by pushing against the skin to assess when the sensation becomes painful.

Patients on the high dose of THC showed impaired performance on the neuropsychological tests, but researchers concluded the pain reduction of patients adds further evidence on the efficacy of cannabis in treating diabetic peripheral neuropathy.

The results of this study were published in the Journal of Pain and Palliative Care Pharmacology.

Earlier this month, the CBD compound in cannabis was reported by researchers as a potential treatment for diabetes.”

http://www.diabetes.co.uk/news/2015/apr/inhaled-cannabis-reduces-pain-in-diabetic-peripheral-neuropathy-patients,-study-suggests-95680845.html

“Efficacy of Inhaled Cannabis on Painful Diabetic Neuropathy.”  http://www.ncbi.nlm.nih.gov/pubmed/25843054

http://www.thctotalhealthcare.com/category/diabetes/

The endocannabinoid system and plant-derived cannabinoids in diabetes and diabetic complications.

An external file that holds a picture, illustration, etc.
Object name is gr1.jpg

“Oxidative stress and inflammation play critical roles in the development of diabetes and its complications.

Recent studies provided compelling evidence that the newly discovered lipid signaling system (ie, the endocannabinoid system) may significantly influence reactive oxygen species production, inflammation, and subsequent tissue injury, in addition to its well-known metabolic effects and functions.

The modulation of the activity of this system holds tremendous therapeutic potential in a wide range of diseases, ranging from cancer, pain, neurodegenerative, and cardiovascular diseases to obesity and metabolic syndrome, diabetes, and diabetic complications.

This review focuses on the role of the endocannabinoid system in primary diabetes and its effects on various diabetic complications, such as diabetic cardiovascular dysfunction, nephropathy, retinopathy, and neuropathy, particularly highlighting the mechanisms beyond the metabolic consequences of the activation of the endocannabinoid system.

The therapeutic potential of targeting the endocannabinoid system and certain plant-derived cannabinoids, such as cannabidiol and Δ9-tetrahydrocannabivarin, which are devoid of psychotropic effects and possess potent anti-inflammatory and/or antioxidant properties, in diabetes and diabetic complications is also discussed.

Although there is much controversy in the field of EC research, experimental evidence and clinical trials have clearly shown that ECS plays a key role in the development of primary diabetes and various diabetic complications. Although inhibition of CB1 receptors has proven to be effective in clinical trials of obesity and metabolic syndrome, this approach has ultimately failed because of increasing patient anxiety. However, recent preclinical studies clearly showed that peripherally restricted CB1 antagonists may represent a viable therapeutic strategy to avoid the previously mentioned adverse effects.

Importantly, CB1 inhibition, as discussed in this review, may also directly attenuate inflammatory responses and ROS and reactive nitrogen species generation in endothelial, immune, and other cell types, as well as in target tissues of diabetic complications, far beyond its known beneficial metabolic consequences. The main effects of CB1 receptor activation on the development of diabetes and diabetic complications are summarized in Figure 1. CB2 agonists may exert beneficial effects on diabetes and diabetic complications by attenuating inflammatory response and ensuing oxidative stress (Figure 2).

Natural cannabinoids, such as CBD and THCV, also have tremendous therapeutic potential.

CBD is a potent antioxidant and anti-inflammatory agent that does not appear to exert its beneficial effects through conventional CB receptors and is already approved for human use.

THCV and its derivatives, which may combine the beneficial effects of simultaneous CB1 inhibition and CB2 stimulation, are still under intense preclinical investigation. It will be interesting to see how newly developed, peripherally restricted CB1 receptor antagonists and/or CB2 receptor agonists and certain natural cannabinoids, such as CBD and THCV, will influence the clinical outcomes of diabetic patients.

We hope that some of these new approaches will be useful in clinical practice in the near future to aid patients with diabetes.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3349875/

http://www.thctotalhealthcare.com/category/diabetes/