Impact of lifetime marijuana use on fasting plasma insulin levels and HOMA-IR score in obese adults with and without insulin resistance.

 

“To explore the association of marijuana use with mean plasma fasting insulin levels and homeostasis model assessment of insulin resistance (HOMA-IR) score in obese adults with different HOMA-IR.

RESULTS:

A total of 65,209 obese individuals aged 18 to 59 years were included. In obese individuals who never used marijuana(reference), the mean value (± standard deviation) was 19.0 (± 12.8) μU/mL for plasma fasting insulin and 4.78 (± 3.49) for HOMA-IR. In individuals with HOMA-IR < 2.13 or ≥ 5.72, we found no association of marijuana use with HOMA-IR. In those with HOMA-IR < 5.72, the highest tertile of MLU (i.e., ≥ 1799 times) was associated with 12% decrease (95% confidence intervals, 4-19%) in the fasting insulin and 10% decrease in HOMA-IR (95% CI 1-19%), as compared with their counterparts who never used marijuana. In those with HOMA-IR ≥ 2.13, we found a marked impact of marijuana use only in adults who used marijuana ≥ 1799 times, with 13% decrease (95% CI 5-19%) in fasting insulin and 10% decrease (95% CI 3-18%) in HOMA-IR score.

CONCLUSIONS:

Marijuana use is associated with reduced fasting insulin levels and HOMA-IR score in US obese adults with HOMA-IR ≥ 2.13, but not in those with HOMA-IR < 2.13 or ≥ 5.72. The impact of marijuana use is the greatest after long-term exposure and is independent of BMI.”

https://www.ncbi.nlm.nih.gov/pubmed/31367991

https://link.springer.com/article/10.1007%2Fs00592-019-01390-x

Overcoming the psychiatric side effects of the cannabinoid CB1 receptor antagonists: Current approaches for therapeutics development.

“The cannabinoid receptor 1 (CBR1) is involved in a variety of physiological pathways and has long been considered a golden target for therapeutic manipulation. A large body of evidence in both animal and human studies suggests that CB1R antagonism is highly effective for the treatment of obesity, metabolic disorders and drug addiction. However, the first-in-class CB1R antagonist/inverse agonist, rimonabant, though demonstrating effectiveness for obesity treatment and smoking cessation, displays serious psychiatric side effects, including anxiety, depression and even suicidal ideation, resulting in its eventual withdrawal from the European market. Several strategies are currently being pursued to circumvent the mechanisms leading to these side effects by developing neutral antagonists, peripherally restricted ligands, and allosteric modulators. In this review, we describe the progress in the development of therapeutics targeting the cannabinoid receptor 1 in the last two decades.”

https://www.ncbi.nlm.nih.gov/pubmed/31284863

http://www.eurekaselect.com/173316/article

Diet, endocannabinoids, and health.

Nutrition Research“Healthy aging includes freedom from disease, ability to engage in physical activity, and maintenance of cognitive skills for which diet is a major lifestyle factor. Aging, diet, and health are at the forefront of well-being for the growing population of older adults with the caveat of reducing and controlling pain. Obesity and diabetes risk increase in frequency in adults, and exercise is encouraged to control weight, reduce risk of type II diabetes, and maintain muscle mass and mobility.

One area of research that appears to integrate many aspects of healthy aging is focused on understanding the endocannabinoid system (ECS) because of its role in systemic energy metabolism, inflammation, pain, and brain biology. Physical activity is important for maintaining health throughout the life cycle. The benefits of exercise facilitate macronutrient use, promote organ health, and augment the maintenance of metabolic activity and physiological functions. One outcome of routine exercise is a generalized well-being, and perhaps, this is linked to the ECS.

The purpose of this review is to briefly present the current knowledge of key components of the ECS that contribute to appetite and influence systemic energy metabolism, and dietary factors that alter the responses of ligand binding and activation of cannabinoidreceptors and its role in the brain. Herein, the objectives are to (1) explain the role of the ECS in the body, (2) describe the relationship between dietary polyunsaturated fatty acids and macronutrient intake and systemic metabolism, and (3) present areas of promising research where exercise induces endocannabinoid production in the brain to benefit well-being. There are many gaps in the knowledge of how the ECS participates in controlling pain through exercise; however, emerging research will reveal key relationships to understand this system in the brain and body.”

https://www.ncbi.nlm.nih.gov/pubmed/31280882

https://www.sciencedirect.com/science/article/pii/S027153171930572X?via%3Dihub

Lifetime marijuana use in relation to insulin resistance in lean, overweight and obese U.S. adults.

Journal of Diabetes banner“Obese individuals are more likely to show insulin resistance (IR). However, limited population studies on marijuana use with markers of IR yield mixed results.

METHODS:

We abstracted data from the 2009-2016 National Health and Nutrition Examination Survey (NHANES). We estimated the minimal lifetime marijuana use using the duration of regular exposure and the frequency of use. We used generalized linear models to determine the association of marijuana use with both fasting insulin and homeostasis model assessment of insulin resistance (HOMA-IR) in lean, overweight and obese individuals, separately. We used interview weight years of data to account for the unequal probability of sampling and non-response.

RESULTS:

Of the total of 129,509 adults aged 18 to 59 years, 50.3% were women. In current obese consumers, the mean insulin in those with < 4 uses/months was 52% (95% CI: 19% to 71%) lower than in never users. Former obese consumers with ≥ 8 uses/month and who stopped marijuana use < 12 months showed 47% (95% CI: 18% to 66%) lower insulin. Those with last use of 12-119 months and ≥ 120 months had 36% (95% CI: 7% to 57%) and 36% (95% CI: 10% to 54%) lower insulin, respectively.

CONCLUSIONS:

Marijuana use is associated with lower fasting insulin and HOMA-IR in obese but not in non-obese adults, even at low frequency of < 4 uses per month. Former consumers with high lifetime use had a significant lower insulin levels which persists, independent of the duration of time since last use.”

https://www.ncbi.nlm.nih.gov/pubmed/31152633

https://onlinelibrary.wiley.com/doi/abs/10.1111/1753-0407.12958

Study: Cannabis Protective Against Diabetes Among Those Overweight”  https://norml.org/news/2019/06/20/study-cannabis-protective-against-diabetes-among-those-overweight

“Cannabis use could help prevent diabetes”  https://mogreenway.com/2019/06/24/cannabis-use-could-help-prevent-diabetes/

“Cannabis linked to lower insulin levels in adults at risk of type 2 diabetes”  https://www.diabetes.co.uk/news/2019/jul/cannabis-linked-to-lower-insulin-levels-in-adults-at-risk-of-type-2-diabetes-99514193.html

Cannabinoid receptors as therapeutic targets for autoimmune diseases: where do we stand?

Drug Discovery Today

“Described during the late 1980s and 1990s, cannabinoid receptors (CB1R and CB2R) are G-protein-coupled receptors (GPCRs) activated by endogenous ligands and cannabinoid drug compounds, such as Δ9-THC. Whereas CB1R has a role in the regulation of neurotransmission in different brain regions and mainly mediates the psychoactive effects of cannabinoids, CB2R is found predominantly in the cells and tissues of the immune system and mediates anti-inflammatory and immunomodulatory processes. Studies have demonstrated that CB1R and CB2R can affect the activation of T cells, B cells, monocytes, and microglial cells, inhibiting proinflammatory cytokine expression and upregulating proresolution mediators. Thus, in this review, we summarize the mechanisms by which CBRs interact with the autoimmune environment and the potential to suppress the development and activation of autoreactive cells. Finally, we highlight how the modulation of CB1R and CB2R is advantageous in the treatment of autoimmune diseases, including multiple sclerosis (MS), type 1 diabetes mellitus (T1DM) and rheumatoid arthritis (RA).”

https://www.ncbi.nlm.nih.gov/pubmed/31158514

https://www.sciencedirect.com/science/article/pii/S1359644618304847?via%3Dihub

Countering the Modern Metabolic Disease Rampage With Ancestral Endocannabinoid System Alignment.

 Image result for frontiers in endocrinology

“When primitive vertebrates evolved from ancestral members of the animal kingdom and acquired complex locomotive and neurological toolsets, a constant supply of energy became necessary for their continued survival. To help fulfill this need, the endocannabinoid (eCB) system transformed drastically with the addition of the cannabinoid-1 receptor (CB1R) to its gene repertoire. This established an eCB/CB1R signaling mechanism responsible for governing the whole organism’s energy balance, with its activation triggering a shift toward energy intake and storage in the brain and the peripheral organs (i.e., liver and adipose).

Although this function was of primal importance for humans during their pre-historic existence as hunter-gatherers, it became expendable following the successive lifestyle shifts of the Agricultural and Industrial Revolutions. Modernization of the world has further increased food availability and decreased energy expenditure, thus shifting the eCB/CB1R system into a state of hyperactive deregulated signaling that contributes to the 21st century metabolic disease pandemic.

Studies from the literature supporting this perspective come from a variety of disciplines, including biochemistry, human medicine, evolutionary/comparative biology, anthropology, and developmental biology. Consideration of both biological and cultural evolution justifies the design of improved pharmacological treatments for obesity and Type 2 diabetes (T2D) that focus on peripheral CB1R antagonism. Blockade of peripheral CB1Rs, which universally promote energy conservation across the vertebrate lineage, represents an evolutionary medicine strategy for clinical management of present-day metabolic disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/31156558

https://www.frontiersin.org/articles/10.3389/fendo.2019.00311/full

Cannabis: From a Plant That Modulates Feeding Behaviors toward Developing Selective Inhibitors of the Peripheral Endocannabinoid System for the Treatment of Obesity and Metabolic Syndrome.

toxins-logo “In this review, we discuss the role of the endocannabinoid (eCB) system in regulating energy and metabolic homeostasis. Endocannabinoids, via activating the cannabinoid type-1 receptor (CB1R), are commonly known as mediators of the thrifty phenotype hypothesis due to their activity in the central nervous system, which in turn regulates food intake and underlies the development of metabolic syndrome. Indeed, these findings led to the clinical testing of globally acting CB1R blockers for obesity and various metabolic complications. However, their therapeutic potential was halted due to centrally mediated adverse effects. Recent observations that highlighted the key role of the peripheral eCB system in metabolic regulation led to the preclinical development of various novel compounds that block CB1R only in peripheral organs with very limited brain penetration and without causing behavioral side effects. These unique molecules, which effectively ameliorate obesity, type II diabetes, fatty liver, insulin resistance, and chronic kidney disease in several animal models, are likely to be further developed in the clinic and may revive the therapeutic potential of blocking CB1R once again.”

https://www.ncbi.nlm.nih.gov/pubmed/31096702

https://www.mdpi.com/2072-6651/11/5/275

The effects of delta-9-tetrahydrocannabinol on Krüppel-like factor-4 expression, redox homeostasis, and inflammation in the kidney of diabetic rat.

Publication cover image

“Diabetes mellitus is a complex, multifactorial disorder that is attributed to pancreatic β cell dysfunction. Pancreatic β cell dysfunction results in declining utilization of glucose by peripheral tissues as kidney and it leads to nephropathy. Excessive production and accumulation of free radicals and incapable antioxidant defense system lead to impaired redox status. Macromolecular damage may occur due to impaired redox status and also immune imbalance.

Δ9-Tetrahydrocannabinol (THC) is the main active ingredient in cannabis. THC acts as an immunomodulator and an antioxidant agent.

Our aim was to evaluate the effects of THC in the diabetic kidney.

According to our data, THC has ameliorative effects on the impaired redox status of diabetic kidney and also it acts as an immunomodulator. Therefore, THC might be used as a therapeutic agent for diabetic kidneys but its usage in the healthy kidney may show adverse effects.”

https://www.ncbi.nlm.nih.gov/pubmed/31081965

https://onlinelibrary.wiley.com/doi/abs/10.1002/jcb.28903

“Marijuana Doesn’t Seem to Harm the Kidneys” https://www.webmd.com/mental-health/addiction/news/20180306/marijuana-doesnt-seem-to-harm-the-kidneys

“Pot Won’t Harm Healthy Young People’s Kidneys, Study Suggests”   https://www.medicinenet.com/script/main/art.asp?articlekey=206375

“Marijuana doesn’t appear to harm kidneys”   https://www.hsph.harvard.edu/news/hsph-in-the-news/marijuana-kidneys/

Role of Cannabinoid Receptor Type 1 in Insulin Resistance and Its Biological Implications.

ijms-logo “Endogenous cannabinoids (ECs) are lipid-signaling molecules that specifically bind to cannabinoid receptor types 1 and 2 (CB1R and CB2R) and are highly expressed in central and many peripheral tissues under pathological conditions. Activation of hepatic CB1R is associated with obesity, insulin resistance, and impaired metabolic function, owing to increased energy intake and storage, impaired glucose and lipid metabolism, and enhanced oxidative stress and inflammatory responses. Additionally, blocking peripheral CB1R improves insulin sensitivity and glucose metabolism and also reduces hepatic steatosis and body weight in obese mice. Thus, targeting EC receptors, especially CB1R, may provide a potential therapeutic strategy against obesity and insulin resistance. There are many CB1R antagonists, including inverse agonists and natural compounds that target CB1R and can reduce body weight, adiposity, and hepatic steatosis, and those that improve insulin sensitivity and reverse leptin resistance. Recently, the use of CB1R antagonists was suspended due to adverse central effects, and this caused a major setback in the development of CB1R antagonists. Recent studies, however, have focused on development of antagonists lacking adverse effects. In this review, we detail the important role of CB1R in hepatic insulin resistance and the possible underlying mechanisms, and the therapeutic potential of CB1R targeting is also discussed.”

https://www.ncbi.nlm.nih.gov/pubmed/31035653

https://www.mdpi.com/1422-0067/20/9/2109

A patent update on cannabinoid receptor 1 antagonists (2015-2018).

Publication Cover

“The endocannabinoid system is an important regulator of various physiological processes. Preclinical and clinical studies indicate that attenuation of the endocannabinoid system via antagonism of the type 1 cannabinoid receptor (CB1) is an excellent strategy to treat obesity, metabolic syndrome and associated disorders. However, centrally acting antagonists of CB1 also produce adverse effects like depression and anxiety. Current efforts are geared towards discovery and optimization of antagonists and modulators of CB1 that have limited brain penetration. Areas Covered: Several recent publications and patent applications support the development of peripherally acting CB1 receptor antagonists and modulators. In this review, recent patents and applications (2015 – 2018) are summarized and discussed. Expert Opinion: Approximately 30 new inventions have been reported since 2015, along with 3 recent commercial deals, highlighting the importance of this class of therapeutics. Taken together, peripherally acting CB1 receptor antagonists and modulators are an emerging class of drugs for metabolic syndrome, non-alcoholic steatohepatitis (NASH) and other important disorders where this receptor has been implicated.”

https://www.ncbi.nlm.nih.gov/pubmed/30889997

https://www.tandfonline.com/doi/abs/10.1080/13543776.2019.1597851?journalCode=ietp20