Beta-caryophyllene protects diet-induced dyslipidemia and vascular inflammation in rats: Involvement of CB2 and PPAR-γ receptors.

Chemico-Biological Interactions

“Beta-caryophyllene (BCP) is a phytocannabinoid possessing selective agonistic activity to cannabinoid type-2 receptors (CB2R) and peroxisome proliferator-activated receptors-α (PPAR-α). However, few studies reported the contribution of PPAR-γ receptors in BCP effects.

The aim of this study was to investigate the BCP effects on diet-induced dyslipidemia and vascular inflammation as well as the involvement of CB2R and PPAR-γ receptors.

BCP treatment was superior to pioglitazone in anti-inflammatory and anti-atherosclerotic measures. BCP may represent a more potent alternate to pioglitazone avoiding its side effects in the treatment of insulin resistance and vascular inflammation.”

https://www.ncbi.nlm.nih.gov/pubmed/30343038

https://www.sciencedirect.com/science/article/pii/S0009279718309347?via%3Dihub

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”   http://www.ncbi.nlm.nih.gov/pubmed/23138934

The relationship between cannabis use and diabetes: Results from the National Epidemiologic Survey on Alcohol and Related Conditions III.

Drug and Alcohol Review banner

“The relationship between cannabis use and diabetes is puzzling. Although cannabis users versus non-users should theoretically have a higher likelihood of diabetes, epidemiological studies suggest otherwise. However, previous epidemiological studies have not considered the potential confounding effects of mental health disorders. As such, the relationship between cannabis use and diabetes was examined while accounting for a range of potential confounders, including mental health disorders.

RESULTS:

Although there was a considerable attenuation in the magnitude of the odds ratios after adjustment for confounders, there was still a decreased likelihood of diabetes for cannabis users versus non-users. The corresponding odds ratios of diabetes were 0.81 (95% confidence interval 0.70, 0.94) and 0.51 (95% confidence interval 0.41, 0.63) for lifetime and 12-month cannabis use, respectively.

DISCUSSION AND CONCLUSIONS:

A decreased likelihood of diabetes for cannabis users versus non-users was indicated after accounting for a range of potential confounders, including mental health disorders. Before the protective effects of cannabis use for diabetes can be suggested, further epidemiological studies are needed that incorporate prospective designs, as well as feature innovative exposure measurements and statistical analyses.”

https://www.ncbi.nlm.nih.gov/pubmed/30288813

https://onlinelibrary.wiley.com/doi/abs/10.1111/dar.12867

Identification of novel mouse and rat CB1R isoforms and in silico modeling of human CB1R for peripheral cannabinoid therapeutics.

Image result for aps acta pharmacologica

“Targeting peripheral CB1R is desirable for the treatment of metabolic syndromes without adverse neuropsychiatric effects.

We previously reported a human hCB1b isoform that is selectively enriched in pancreatic beta-cells and hepatocytes, providing a potential peripheral therapeutic hCB1R target. It is unknown whether there are peripherally enriched mouse and rat CB1R (mCB1 and rCB1, respectively) isoforms.

In this study, we found no evidence of peripherally enriched rodent CB1 isoforms; however, some mCB1R isoforms are absent in peripheral tissues. We show that the mouse Cnr1 gene contains six exons that are transcribed from a single promoter. We found that mCB1A is a spliced variant of extended exon 1 and protein-coding exon 6; mCB1B is a novel spliced variant containing unspliced exon 1, intron 1, and exon 2, which is then spliced to exon 6; and mCB1C is a spliced variant including all 6 exons.

Using RNAscope in situ hybridization, we show that the isoforms mCB1A and mCB1B are expressed at a cellular level and colocalized in GABAergic neurons in the hippocampus and cortex. RT-qPCR reveals that mCB1A and mCB1B are enriched in the brain, while mCB1B is not expressed in the pancreas or the liver. Rat rCB1R isoforms are differentially expressed in primary cultured neurons, astrocytes, and microglia.

We also investigated modulation of Cnr1 expression by insulin in vivo and carried out in silico modeling of CB1R with JD5037, a peripherally restricted CB1R inverse agonist, using the published crystal structure of hCB1R.

The results provide models for future CB1R peripheral targeting.”

Sub-chronic treatment with cannabidiol but not with URB597 induced a mild antidepressant-like effect in diabetic rats.

Cover image

“Depression associated with diabetes has been described as a highly debilitating comorbidity. Due to its complex and multifactorial mechanisms, the treatment of depression associated with diabetes represents a clinical challenge.

Cannabidiol (CBD), the non-psychotomimetic compound derived from Cannabis sativa, has been pointed out as a promising compound for the treatment of several psychiatric disorders.

Here, we evaluated the potential antidepressant-like effect of acute or sub-chronic treatment with CBD in diabetic rats using the modified forced swimming test (mFST).

Also, to better understand the functionality of the endocannabinoid system in diabetic animals we also evaluated the effect of URB597, a fatty acid amide hydrolase inhibitor.

Acute treatment with either CBD or URB induced an antidepressant-like effect in NGL rats, but not in DBT rats. However, sub-chronic treatment with CBD (only at a dose of 30 mg/kg), but not with URB597, induced a mild antidepressant-like effect in DBT animals. Neither body weight nor blood glucose levels were altered by treatments.

Considering the importance of the endocannabinoid system to the mechanism of action of many antidepressant drugs, the mild antidepressant-like effect of the sub-chronic treatment with CBD, but not with URB597 does not invalidate the importance of deepening the studies involving the endocannabinoid system particularly in DBT animals.”

https://www.ncbi.nlm.nih.gov/pubmed/29885450

Computational investigation on the binding modes of Rimonabant analogues with CB1 and CB2.

Publication cover image

“The human cannabinoid G protein coupled receptor 1 (CB1) is highly expressed in central nervous system. CB1-selective antagonists show therapeutic promise in a wide range of disorders, such as obesity-related metabolic disorders, dyslipidemia, drug abuse and type 2 diabetes.

Rimonabant (SR141716A), MJ08 and MJ15 are selective CB1 antagonists with selectivity >1000 folds over CB2 despite of 42% sequence identity between CB1 and CB2. The integration of homology modeling, automated molecular docking and molecular dynamics simulation were used to investigate the binding modes of these selective inverse agonists/antagonists with CB1 and CB2 and their selectivity.

Our analyses showed that the hydrophobic interactions between ligands and hydrophobic pockets of CB1 account for the main binding affinity. In addition, instead of interacting with ligands directly as previously reported, the Lys1923.28in CB1 was engaged in indirect interactions with ligands to keep inactive-state CB1 stable by forming the salt bridge with Asp1762.63 . Lastly, our analyses indicated that the selectivity of these antagonists came from the difference in geometry shapes of binding pockets of CB1 and CB2.

The present study could guide future experimental works on these receptors and has the guiding significance for the design of functionally selective drugs targeting CB1 or CB2 receptors.”

https://www.ncbi.nlm.nih.gov/pubmed/29797785

https://onlinelibrary.wiley.com/doi/abs/10.1111/cbdd.13337

Synthesis of 13 C6 -labeled, dual-target inhibitor of Cannabinoid-1 receptor (CB1 R) and inducible nitric oxide synthase (iNOS).

Publication cover image

“Cannabinoid-1 receptor (CB1 R) antagonists/inverse agonists have great potential in the treatment of metabolic disorders like dyslipidemia, type 2 diabetes and non-alcoholic steatohepatitis (NASH).

CB1 R inverse agonists have also been reported to be effective in mitigating fibrotic disorders in murine models.

Inducible nitric oxide synthase is another promising target implicated in fibrotic and inflammatory disorders.

We have disclosed MRI-1867 as a potent and selective, peripherally acting dual-target inhibitor of the cannabinoid receptor (CB1 R) and inducible nitric oxide synthase (iNOS).

Herein, we report the synthesis of [13 C6 ]-MRI-1867 as a racemate from commercially available chlorobenzene-13 C6 as the starting, stable-isotope label reagent. The racemic [13 C6 ]-MRI-1867 was further processed to the stable-isotope labeled enantiopure compounds utilizing chiral chromatography. Both racemic [13 C6]-MRI-1867 and S-13 C6 -MRI-1867 will be used to quantitate unlabeled S-MRI-1867 during clinical DMPK studies and will be used as an LC-MS/MS bioanalytical standard.”

https://www.ncbi.nlm.nih.gov/pubmed/29790591

https://onlinelibrary.wiley.com/doi/abs/10.1002/jlcr.3639

Is Cannabidiol a Promising Substance for New Drug Development? A Review of its Potential Therapeutic Applications.

Critical Reviews™ in Eukaryotic Gene Expression

“The pharmacological importance of cannabidiol (CBD) has been in study for several years.

CBD is the major nonpsychoactive constituent of plant Cannabis sativa and its administration is associated with reduced side effects.

Currently, CBD is undergoing a lot of research which suggests that it has no addictive effects, good safety profile and has exhibited powerful therapeutic potential in several vital areas.

It has wide spectrum of action because it acts through endocannabinoid receptors; CB1 and CB2 and it also acts on other receptors, such as GPR18, GPR55, GPR 119, 5HT1A, and TRPV2.

This indicates its therapeutic value for numerous medical conditions because of its neuroprotective and immunomodulatory properties.

Potential therapeutic applications of CBD include, analgesic, anti-inflammatory, anxiolytic, anti-arthritic, anti-depressant, anti-Alzheimer disease, anti-ischemic, neuroprotective, and anti-fibrotic.

More promising areas appear to include diabetes and cancer where CBD exhibits lesser side effects and more therapeutic benefits as compared to recent available medical therapies.

Hence, CBD is a promising substance for the development of new drug. However further research and clinical studies are required to explore its complete potential.”

LH-21, A Peripheral Cannabinoid Receptor 1 Antagonist, Exerts Favorable Metabolic Modulation Including Antihypertensive Effect in KKAy Mice by Regulating Inflammatory Cytokines and Adipokines on Adipose Tissue.

Related image

“Patients with obesity are susceptible to hypertension and diabetes. Over-activation of cannabinoid receptor 1 (CB1R) in adipose tissue is proposed in the pathophysiology of metabolic disorders, which led to the metabolic dysfunction of adipose tissue and deregulated production and secretion of adipokines.

In the current study, we determined the impact of LH-21, a representative peripheral CB1R antagonist, on the obesity-accompanied hypertension and explored the modulatory action of LH-21 on the adipose tissue in genetically obese and diabetic KKAy mice.

3-week LH-21 treatment significantly decreased blood pressure with a concomitant reduction in body weight, white adipose tissue (WAT) mass, and a slight loss on food intake in KKAy mice. Meanwhile, glucose handling and dyslipidemia were also markedly ameliorated after treatment. Gene expression of pro-inflammatory cytokines in WAT and the aortae were both attenuated apparently by LH-21, as well the mRNA expression of adipokines (lipocalin-2, leptin) in WAT. Concomitant amelioration on the accumulation of lipocalin-2 was observed in both WAT and aortae. In corresponding with this, serum inflammatory related cytokines (tumor necrosis factor α, IL-6, and CXCL1), and lipocalin-2 and leptin were lowered notably.

Thus according to current results, it can be concluded that the peripheral CB1R antagonist LH-21 is effective in managing the obesity-accompanied hypertension in KKAy mice. These metabolic benefits are closely associated with the regulation on the production and secretion of inflammatory cytokines and adipokines in the WAT, particularly alleviated circulating lipocalin-2 and its accumulation in aortae.”

https://www.ncbi.nlm.nih.gov/pubmed/29731737

https://www.frontiersin.org/articles/10.3389/fendo.2018.00167/full

Cannabinoid Type 1 Receptors are Upregulated During Acute Activation of Brown Adipose Tissue.

Diabetes

“Activating brown adipose tissue (BAT) could provide a potential approach for the treatment of obesity and metabolic disease in humans.

Obesity is associated with up-regulation of the endocannabinoid system, and blocking the cannabinoid type 1 receptor (CB1R) has been shown to cause weight loss and decrease cardiometabolic risk factors. These effects may partly be mediated via increased BAT metabolism, since there is evidence that CB1R antagonism activates BAT in rodents.

To investigate the significance of CB1R in BAT function, we quantified the density of CB1R in human and rodent BAT using the positron emission tomography (PET) radioligand [18F]FMPEP-d2 , and in parallel measured BAT activation with the glucose analogue [18F]FDG. Activation by cold exposure markedly increased CB1R density and glucose uptake in BAT of lean men. Similarly, β3-receptor agonism increased CB1R density in BAT of rats.

In contrast, overweight men with reduced BAT activity exhibited decreased CB1R in BAT, reflecting impaired endocannabinoid regulation. Image-guided biopsies confirmed CB1R mRNA expression in human BAT. Furthermore, CB1R blockade increased glucose uptake and lipolysis of brown adipocytes.

Our results highlight that CB1Rs are significant for human BAT activity, and the CB1R provide a novel therapeutic target for BAT activation in humans.”

Cannabinoids in health and disease: pharmacological potential in metabolic syndrome and neuroinflammation.

 

Image result for Horm Mol Biol Clin Investig

“The use of different natural and/or synthetic preparations of Cannabis sativa is associated with therapeutic strategies for many diseases. Indeed, thanks to the widespread diffusion of the cannabinoidergic system in the brain and in the peripheral districts, its stimulation, or inhibition, regulates many pathophysiological phenomena.

In particular, central activation of the cannabinoidergic system modulates the limbic and mesolimbic response which leads to food craving.

Moreover, cannabinoid agonists are able to reduce inflammatory response.

In this review a brief history of cannabinoids and the protagonists of the endocannabinoidergic system, i.e. synthesis and degradation enzymes and main receptors, will be described. Furthermore, the pharmacological effects of cannabinoids will be outlined. An overview of the involvement of the endocannabinoidergic system in neuroinflammatory and metabolic pathologies will be made.

Finally, particular attention will also be given to the new pharmacological entities acting on the two main receptors, cannabinoid receptor type 1 (CB1) and cannabinoid receptor type 2 (CB2), with particular focus on the neuroinflammatory and metabolic mechanisms involved.”