“Seems there’s no end to the list of maladies medical marijuana can’t treat.”
“Seems there’s no end to the list of maladies medical marijuana can’t treat.”
“A new study, published in the journal Clinical Gastroenterology and Hepatology, suggests that cannabis could help relieve symptoms of Crohn’s Disease, a lifelong chronic illness that causes abdominal pain, cramping, diarrhea, nausea, vomiting, weight loss and lack of energy.”
“That’s good news for sufferers, especially considering there is currently no cure.
Researchers studied 21 patients with Crohn’s Disease. Participants were randomly assigned to one of two groups: The first group was given cannabis cigarettes twice a day, the second group was given a placebo containing cannabis flowers from which the THC had been removed.
“A short course (8 week) of THC-rich cannabis produced significant clinical, steroid-free benefits to 11 patients with active CD, compared to placebo, without side effects,” the study’s authors wrote.
The most promising part?
“Complete remission was achieved by 5/11 subjects in the cannabis group.”
Crohn’s patients aren’t the only ones who can benefit from marijuana’s medical properties, according to new research.
A recent study published in the American Journal of Medicine, suggests that marijuana can lower the risk of diabetes as well.
Marijuana users have lower fasting insulin levels, Murray Mittleman, associate professor of medicine at Harvard Medical School and the lead author of the study told Time Healthland. They are “less resistant to the insulin produced by their body to maintain a normal blood sugar level,”he says.
According to Health Canada, medical marijuana can also be used to manage symptoms like severe pain, cachexia, anorexia, weight loss, and severe nausea from cancer; arthritis pain; seizures from epilepsy; and pain and muscle spasms from spinal cord injuries and multiple sclerosis.”
More:http://www.besthealthmag.ca/blog/post/news-can-marijuana-cure-crohns-disease
“In the past centuries, different preparations of marijuana have been used for the treatment of gastrointestinal (GI) disorders, such as GI pain, gastroenteritis and diarrhea.
Delta9-tetrahydrocannabinol (THC; the active component of marijuana), as well as endogenous and synthetic cannabinoids, exert their biological functions on the gastrointestinal tract by activating two types of cannabinoid receptors, cannabinoid type 1 receptor (CB1 receptor) and cannabinoid type 2 receptor (CB2 receptor). While CB1 receptors are located in the enteric nervous system and in sensory terminals of vagal and spinal neurons and regulate neurotransmitter release, CB2 receptors are mostly distributed in the immune system, with a role presently still difficult to establish.
Under pathophysiological conditions, the endocannabinoid system conveys protection to the GI tract, eg from inflammation and abnormally high gastric and enteric secretion.
For such protective activities, the endocannabinoid system may represent a new promising therapeutic target against different GI disorders, including frankly inflammatory bowel diseases (eg, Crohn’s disease), functional bowel diseases (eg, irritable bowel syndrome), and secretion- and motility-related disorders.”
“Numerous investigations have recently demonstrated the important roles of the endocannabinoid system in the gastrointestinal (GI) tract under physiological and pathophysiological conditions.
In the GI tract, cannabinoid type 1 (CB1) receptors are present in neurons of the enteric nervous system and in sensory terminals of vagal and spinal neurons, while cannabinoid type 2 receptors are located in immune cells. Activation of CB1 receptors was shown to modulate several functions in the GI tract, including gastric secretion, gastric emptying and intestinal motility.
Under pathophysiological conditions induced experimentally in rodents, the endocannabinoid system conveys protection to the GI tract (e.g. from inflammation and abnormally high gastric and enteric secretions).
Such protective activities are largely in agreement with anecdotal reports from folk medicine on the use of Cannabis sativa extracts by subjects suffering from various GI disorders.
Thus, the endocannabinoid system may serve as a potentially promising therapeutic target against different GI disorders, including frankly inflammatory bowel diseases (e.g. Crohn’s disease), functional bowel diseases (e.g. irritable bowel syndrome) and secretion- and motility-related disorders.
As stimulation of this modulatory system by CB1 receptor agonists can lead to unwanted psychotropic side effects, an alternative and promising avenue for therapeutic applications resides in the treatment with CB1 receptor agonists that are unable to cross the blood-brain barrier, or with compounds that inhibit the degradation of endogenous ligands (endocannabinoids) of CB1 receptors, hence prolonging the activity of the endocannabinoid system.”
“The cannabis plant has been known to humanity for centuries as a remedy for pain, diarrhea, and inflammation. Current research has shown cannabis to be a useful remedy for many diseases, including multiple sclerosis, dystonia, and chronic pain.
Cannabinoids are used to improve food intake in anorexia of AIDS patients and to prevent vomiting due to cancer chemotherapy. In inflammatory conditions cannabinoids improve pain in rheumatoid arthritis and pain and diarrhea in Crohn’s disease. Cannabinoids reduce the size of brain infarct and cardiac reperfusion injury. However, cannabinoid treatment is not free of side effects including euphoria, psychosis, anxiety, paranoia, dependence and abuse.
Since the cannabinoid system is involved in many physiological and pathological processes, the therapeutic potential is great. We must not be blind to the opportunity offered to us by medical cannabis just because it is an illicit drug, nor should we be temped by the quick response of patients to the central effect of cannabis. More research is warranted to explore the full potential of cannabis as medicine.”
“Cannabis sativa is one of the oldest herbal remedies known to man. Over the past four thousand years, it has been used for the treatment of numerous diseases but due to its psychoactive properties, its current medicinal usage is highly restricted. In this review, we seek to highlight advances made over the last forty years in the understanding of the mechanisms responsible for the effects of cannabis on the human body and how these can potentially be utilized in clinical practice. During this time, the primary active ingredients in cannabis have been isolated, specific cannabinoid receptors have been discovered and at least five endogenous cannabinoid neurotransmitters (endocannabinoids) have been identified. Together, these form the framework of a complex endocannabinoid signalling system that has widespread distribution in the body and plays a role in regulating numerous physiological processes within the body. Cannabinoid ligands are therefore thought to display considerable therapeutic potential and the drive to develop compounds that can be targeted to specific neuronal systems at low enough doses so as to eliminate cognitive side effects remains the ‘holy grail’ of endocannabinoid research.”
“Drugs derived from Cannabis sativa (Cannabinceae) were used until the 1940’s for their stimulant and depressant effects for treating somatic and psychiatric illnesses. Renewed interest in marihuana research began in the 1970’s and again pointed to the therapeutic potential of cannabinoids. Safer and more useful therapeutic agents may be generated from cannabinoids similarly to morphine, lysergic acid diethylamide, and cocaine which have structurally related analgesics, oxytoxics, and local anesthetics respectively. It has been shown that the C-ring in cannabinoids can be substituted with a variety of nitrogen and sulfur-containing rings without loss of CNS (central nervous system) activity. Cannabinoids have been shown to inhibit prostaglandin synthesis, intensify pressor effects of endogenous amines like norepinephrine, and enhance the stimulant effects of amphetamine. Cannabinoids’ therapeutic potential lies in the areas of analgesics and anticonvulsants, and for use as a sedative-hypnotic, an antiglaucoma agent, an antiasthmatic agent, an antidiarrheal agent, and possibly as an anticancer and immunosuppressant agent.”
“Human tissues express cannabinoid CB(1) and CB(2) receptors that can be activated by endogenously released ‘endocannabinoids’ or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB(1)/CB(2) receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ(9)-tetrahydrocannabinol (Δ(9)-THC)) and Sativex (Δ(9)-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson’s and Huntington’s diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB(2) receptors, and/or (v) adjunctive ‘multi-targeting’.” https://www.ncbi.nlm.nih.gov/pubmed/23108552
The first formal report of cannabis as a medicine appeared in China nearly 5000 years ago when it was recommended for malaria, constipation, rheumatic pains and childbirth and, mixed with wine, as a surgical analgesic. There are subsequent records of its use throughout Asia, the Middle East, Southern Africa and South America. Accounts by Pliny, Dioscorides and Galen remained influential in European medicine for 16 centuries.”
“It was not until the 19th century that cannabis became a mainstream medicine in Britain. W. B. O’Shaughnessy, an Irish scientist and physician, observed its use in India as an analgesic, anticonvulsant, anti-spasmodic, anti-emetic and hypnotic. After toxicity experiments on goats and dogs, he gave it to patients and was impressed with its muscle-relaxant, anticonvulsant and analgesic properties, and recorded its use-fulness as an anti-emetic.”
“After these observations were published in 1842, medicinal use of cannabis expanded rapidly. It soon became available ‘over the counter’ in pharmacies and by 1854 it had found its way into the United States Dispensatory. The American market became flooded with dozens of cannabis-containing home remedies.”
“Cannabis was outlawed in 1928 by ratification of the 1925 Geneva Convention on the manufacture, sale and movement of dangerous drugs. Prescription remained possible until final prohibition under the 1971 Misuse of Drugs Act, against the advice of the Advisory Committee on Drug Dependence.”
“In the USA, medical use was effectively ruled out by the Marijuana Tax Act 1937. This ruling has been under almost constant legal challenge and many special dispensations were made between 1976 and 1992 for individuals to receive ‘compassionate reefers’. Although this loophole has been closed, a 1996 California state law permits cultivation or consumption of cannabis for medical purposes, if a doctor provides a written endorsement. Similar arrangements apply in Italy and Canberra, Australia.”
“Results and Conclusions Cannabis and some cannabinoids are effective anti-emetics and analgesics and reduce intra-ocular pressure. There is evidence of symptom relief and improved well-being in selected neurological conditions, AIDS and certain cancers. Cannabinoids may reduce anxiety and improve sleep. Anticonvulsant activity requires clarification. Other properties identified by basic research await evaluation. Standard treatments for many relevant disorders are unsatisfactory. Cannabis is safe in overdose but often produces unwanted effects, typically sedation, intoxication, clumsiness, dizziness, dry mouth, lowered blood pressure or increased heart rate. The discovery of specific receptors and natural ligands may lead to drug developments. Research is needed to optimise dose and route of administration, quantify therapeutic and adverse effects, and examine interactions.”
“Cannabinoids produce a plethora of biological effects, including the modulation of neuronal activity through the activation of CB(1) receptors and of immune responses through the activation of CB(2) receptors. The selective targeting of either of these two receptor subtypes has clear therapeutic value. Recent evidence indicates that some of the cannabinomimetic effects previously thought to be produced through CB(1) and/or CB(2) receptors, be they on neuronal activity, on the vasculature tone or immune responses, still persist despite the pharmacological blockade or genetic ablation of CB(1) and/or CB(2) receptors. This suggests that additional cannabinoid and cannabinoid-like receptors exist. Here we will review this evidence in the context of their therapeutic value and discuss their true belonging to the endocannabinoid signaling system.” http://www.ncbi.nlm.nih.gov/pubmed/19248809