Cannabinoid for alcohol use disorder

pubmed logo

“Several pieces of evidence have implicated the endocannabinoid system on dopaminergic mesolimbic brain reward, as well as the potential role of cannabinoid receptors CB1 and CB2 on modulation of reinforced properties of drug abuse and consequently to the treatment of substance use disorder, including alcoholism.

Moreover, growing evidence has been proposed that cannabis or cannabinoid compounds may be helpful to treat alcohol use disorder (AUD).

Cannabis is prevalent among individuals who also consume alcohol. While some authors reported that cannabis may be a promising candidate as a substitute medication for AUD, some studies have demonstrated that concomitant use of alcohol and cannabis may increase the risk of adverse outcomes.

Considering that advances in the legalization and decriminalization movements regarding cannabis have led to increased availability worldwide, the current chapter aims to provide evidence on the benefits and risks of combining alcohol and cannabis, as well as the potential therapeutic use of cannabinoid compounds in treating AUD.”

https://pubmed.ncbi.nlm.nih.gov/39523058/

“Growing studies have indicated that medicinal cannabis could be reasoned as a substitute therapy for alcohol, especially among individuals who are trying to reduce drinking behavior. Based on these premises, medicinal cannabis might be safer and also produce less social harms, for this reason some studies have been pointed as a good candidate for substitute medication for alcohol.”

https://www.sciencedirect.com/science/article/abs/pii/S0074774224001089?via%3Dihub

Therapeutic potential of minor cannabinoids in psychiatric disorders: A systematic review

pubmed logo

“Interest in cannabinoids’ therapeutic potential in mental health is growing, supported by evidence of the involvement of the endocannabinoid system in psychiatric disorders such as anxiety, depression, and addiction.

While the major cannabinoids cannabidiol (CBD) and Δ9-tetrahydrocannabinol (Δ9-THC) have been more extensively researched, approximately 120 minor cannabinoids from the cannabis plant have been identified. Although some displayed promising pharmacological profiles, research on their application for psychiatric disorders is fragmented.

This systematic review evaluates, for the first time, both preclinical and clinical studies exploring minor cannabinoids’ therapeutic potential in psychiatric disorders. 22 preclinical studies and one clinical study were included, investigating various minor cannabinoids in substance use disorders, anxiety disorders, depressive disorders, trauma and stressor-related disorders, psychotic disorders, neurodevelopmental disorders, and eating disorders. Despite the heterogeneous results and the moderate to high risk of bias in several articles, certain compounds demonstrate promise for further investigation.

Δ8-tetrahydrocannabidivarin (Δ8-THCV) exhibited potential for nicotine addiction; Δ9-tetrahydrocannabidivarin (Δ9-THCV) for psychotic-like symptoms; cannabidiolic acid methyl ester (CBDA-ME) alleviated anxiety and depression-like symptoms, and cannabidivarin (CBDV) autism spectrum disorder-like symptoms.”

https://pubmed.ncbi.nlm.nih.gov/39541799/

https://www.sciencedirect.com/science/article/pii/S0924977X24007508?via%3Dihub

CB1 Receptors In NG2 CELLS MEDIATE CANNABINOID-EVOKED FUNCTIONAL MYELIN REGENERATION

pubmed logo

“Defects in myelin homeostasis have been reported in many neuropathological conditions. Cannabinoid compounds have been shown to efficiently promote myelin regeneration in animal models of demyelination. However, it is still unknown whether this action relies mostly on a cell autonomous effect on oligodendroglial-lineage-NG2 cells.

By using conditional genetic mouse models, here we found that cannabinoid CB1 receptors located on NG2 cells are required for oligodendroglial differentiation and myelin regeneration after demyelination. Selective CB1 receptor gene depletion in NG2 cells following toxin-induced demyelination disrupted oligodendrocyte regeneration and functional remyelination and exacerbated axonal damage. These deficits were rescued by pharmacological blockade of the RhoA/ROCK/Cofilin pathway.

Conversely, tetrahydrocannabinol administration promoted oligodendrocyte regeneration and functional remyelination in wild-type but not Ng2-CB1-deficient mice.

Overall, this study identifies CB1 receptors as essential modulators of remyelination and support the therapeutic potential of cannabinoids for promoting remyelination in neurological disorders.”

https://pubmed.ncbi.nlm.nih.gov/39528076/

“Cannabinoids have been shown to modulate myelin development and regeneration in mice. Here, using OPC-specific reporter mouse lines in combination with models of toxin-induced demyelination, we found that CB1 receptors located on NG2 cells, by modulating RhoA/ROCK/cofilin and mTORC1 signaling in a coordinated manner, exert an essential function in controlling NG2 cell differentiation, OL regeneration, myelin regeneration and functional recovery following demyelination, thus supporting the therapeutic potential of cannabinoids for promoting remyelination in neurological disorders.”

https://www.sciencedirect.com/science/article/abs/pii/S0301008224001199?via%3Dihub

Combinatorial effects of cannabinoid receptor 1 and 2 agonists on characteristics and proteomic alteration in MDA-MB-231 breast cancer cells

pubmed logo

“Breast cancer is the most common cancer diagnosed in women worldwide. However, the effective treatment for breast cancer progression is still being sought.

The activation of cannabinoid receptor (CB) has been shown to negatively affect breast cancer cell survival.

Our previous study also reported that breast cancer cells responded to various combinations of CB1 and CB2 agonists differently. Nonetheless, the mechanism underlying this effect and whether this phenomenon can be seen in other cancer characteristics remain unknown. Therefore, this study aims to further elucidate the effects of highly selective CB agonists and their combination on triple-negative breast cancer proliferation, cell cycle progression, invasion, lamellipodia formation as well as proteomic profile of MDA-MB-231 breast cancer cells.

The presence of CB agonists, specifically a 2:1 (ACEA: GW405833) combination, prominently inhibited colony formation and induced the S-phase cell cycle arrest in MDA-MB-231 cells. Furthermore, cell invasion ability and lamellipodia formation of MDA-MB-231 were also attenuated by the exposure of CB agonists and their 2:1 combination ratio. Our proteomic analysis revealed proteomic profile alteration in MDA-MB-231 upon CB exposure that potentially led to breast cancer suppression, such as ZPR1/SHC1/MAPK-mediated cell proliferation and AXL/VAV2/RAC1-mediated cell motility pathways.

Our findings showed that selective CB agonists and their combination suppressed breast cancer characteristics in MDA-MB-231 cells. The exposure of CB agonists also altered the proteomic profile of MDA-MB-231, which could lead to cell proliferation and motility suppression.”

https://pubmed.ncbi.nlm.nih.gov/39527598/

“Our study demonstrated that the presence of CB agonists hindered breast cancer cell growth, cell cycle progression, invasion through extracellular matrices and lamellipodia formation. The exposure of specific combination of CB1 and CB2 agonists also enhanced their breast cancer suppression effects. Moreover, breast cancer survival and motility-related proteins affected by the presence of these agonists suggesting the potential pathways underlying their effects were also depicted in this study.”

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0312851

The Endocannabinoid System of the Nervous and Gastrointestinal Systems Changes after a Subnoxious Cisplatin Dose in Male Rats

pubmed logo

“Background/Objectives: Cisplatin, a common chemotherapy agent, is well known to cause severe side effects in the gastrointestinal and nervous systems due to its toxic and pro-inflammatory effects. Although pharmacological manipulation of the endocannabinoid system (ECS) can alleviate these side effects, how chemotherapy affects the ECS components in these systems remains poorly understood. Our aim was to evaluate these changes. 

Methods: Male Wistar rats received cisplatin (5 mg/kg, i.p.) or saline on day 0 (D0). Immediately after, serial X-rays were taken for 24 h (D0). Body weight was recorded (D0, D1, D2 and D7) and behavioural tests were performed on D4. On D7, animals were euthanized, and gastrointestinal tissue, dorsal root ganglia (DRGs) and brain areas were collected. Expression of genes related to the ECS was assessed via Rt-PCR, while LC-MS/MS was used to analyse endocannabinoid and related N-acylethanolamine levels in tissue and plasma. 

Results: Animals treated with cisplatin showed a reduction in body weight. Cisplatin reduced gastric emptying during D0 and decreased MAGL gene expression in the antrum at D7. Despite cisplatin not causing mechanical or heat sensitivity, we observed ECS alterations in the prefrontal cortex (PFC) and DRGs similar to those seen in other chronic pain conditions, including an increased CB1 gene expression in L4/L5 DRGs and a decreased MAGL expression in PFC. 

Conclusions: A single dose of cisplatin (5 mg/kg, i.p.), subnoxious, but capable of inducing acute gastrointestinal effects, caused ECS changes in both gastrointestinal and nervous systems. Modulating the ECS could alleviate or potentially prevent chemotherapy-induced toxicity.”

https://pubmed.ncbi.nlm.nih.gov/39458898/

“In view of our current results, we propose the use of treatments to modulate the ECS to prevent the side effects induced by chemotherapeutic treatment. These cannabinoid-based treatments could be administered just before or after the first (and each) chemotherapeutic cycle to palliate or, better, prevent gastrointestinal and nervous toxicity induced by chemotherapy.”

https://www.mdpi.com/1424-8247/17/10/1256

Unveiling the Potential of Phytocannabinoids: Exploring Marijuana’s Lesser-Known Constituents for Neurological Disorders

pubmed logo

“Cannabis sativa is known for producing over 120 distinct phytocannabinoids, with Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) being the most prominent, primarily in their acidic forms.

Beyond Δ9-THC and CBD, a wide array of lesser-known phytocannabinoids, along with terpenes, flavonoids, and alkaloids, demonstrate diverse pharmacological activities, interacting with the endocannabinoid system (eCB) and other biological pathways. These compounds, characterized by phenolic structures and hydroxyl groups, possess lipophilic properties, allowing them to cross the blood-brain barrier (BBB) effectively.

Notably, their antioxidant, anti-inflammatory, and neuro-modulatory effects position them as promising agents in treating neurodegenerative disorders. While research has extensively examined the neuropsychiatric and neuroprotective effects of Δ9-THC, other minor phytocannabinoids remain underexplored. Due to the well-established neuroprotective potential of CBD, there is growing interest in the therapeutic benefits of non-psychotropic minor phytocannabinoids (NMPs) in brain disorders.

This review highlights the emerging research on these lesser-known compounds and their neuroprotective potential. It offers insights into their therapeutic applications across various major neurological conditions.”

https://pubmed.ncbi.nlm.nih.gov/39456229/

“In summary, the therapeutic potential of cannabis sativa extends well beyond the widely studied CBD, encompassing a diverse range of lesser-known phytocannabinoids that show promise in addressing various neurological disorders. The neuroprotective functions of these NMPs, particularly their antioxidant, anti-inflammatory, and immune-modulating properties, offer new avenues for research and treatment. While the pharmacological mechanisms of many NMPs remain underexplored, emerging studies suggest their potential to develop novel therapies for brain disorders. As research continues to unfold, these findings could pave the way for innovative cannabinoid plant-based treatments that go beyond the scope of traditional approaches, offering new hope in neuroprotection and disease management.”

https://www.mdpi.com/2218-273X/14/10/1296

Cannabinoids-Multifunctional Compounds, Applications and Challenges-Mini Review

pubmed logo

“Cannabinoids represent a highly researched group of plant-derived ingredients. The substantial investment of funds from state and commercial sources has facilitated a significant increase in knowledge about these ingredients.

Cannabinoids can be classified into three principal categories: plant-derived phytocannabinoids, synthetic cannabinoids and endogenous cannabinoids, along with the enzymes responsible for their synthesis and degradation. All of these compounds interact biologically with type 1 (CB1) and/or type 2 (CB2) cannabinoid receptors.

A substantial body of evidence from in vitro and in vivo studies has demonstrated that cannabinoids and inhibitors of endocannabinoid degradation possess anti-inflammatory, antioxidant, antitumour and antifibrotic properties with beneficial effects. This review, which spans the period from 1940 to 2024, offers an overview of the potential therapeutic applications of natural and synthetic cannabinoids. The development of these substances is essential for the global market of do-it-yourself drugs to fully exploit the promising therapeutic properties of cannabinoids.”

https://pubmed.ncbi.nlm.nih.gov/39459291/

https://www.mdpi.com/1420-3049/29/20/4923

Cannabidiol partially rescues behavioral, neuroinflammatory and endocannabinoid dysfunctions stemming from maternal obesity in the adult offspring

pubmed logo

“Maternal obesity is known to increase the risk of psychiatric disorders, such as anxiety, depression, schizophrenia and autism spectrum disorder in the offspring. While preventive measures are well-documented, practical approaches for addressing the damages once they are already established are limited.

We have recently demonstrated the interplay between maternal obesity and treatment with cannabidiol (CBD) on neuroinflammation and peripheral metabolic disturbances during adolescence, however, it is known that both factors tend to vary throughout life. Therefore, here we investigated the potential of CBD to mitigate these alterations in the adult offspring of obese dams.

Female Wistar rats were fed a cafeteria diet for 12 weeks prior to mating, and during gestation and lactation. Offspring received CBD (50 mg/kg) for 3 weeks from the 70th day of life. Behavioral tests assessed anxiety-like manifestations and social behavior, while neuroinflammatory and endocannabinoid markers were evaluated in the hypothalamus, prefrontal cortex (PFC) and hippocampus, as well as the biochemical profile in the plasma.

CBD treatment attenuated maternal obesity-induced anxiety-like and social behavioral alterations, restoring exacerbated astrocytic and microglial markers in the hypothalamus, PFC and hippocampus of the offspring, as well as endocannabinoid levels in the PFC, with notable sex differences. Additionally, CBD attenuated plasma glucose and lipopolysaccharides (LPS) concentrations in females.

These findings underscore the persistent influence of maternal obesity on the offspring’s health, encompassing metabolic irregularities and behavioral impairments, as well as the role of the endocannabinoid system in mediating these outcomes across the lifespan.”

https://pubmed.ncbi.nlm.nih.gov/39447736/

“Treatment with cannabidiol rescues anxiety and social disturbances in the offspring.”

https://www.sciencedirect.com/science/article/abs/pii/S0028390824003654?via%3Dihub


Decoding the Therapeutic Potential of Cannabis and Cannabinoids in Neurological Disorders

pubmed logo

“For millennia, Cannabis sativa has served diverse roles, from medicinal applications to recreational use. Despite its extensive historical use, only a fraction of its components have been explored until recent times.

The therapeutic potential of Cannabis and its constituents has garnered attention, with suggestions for treating various conditions such as Parkinson’s disease, epilepsy, Alzheimer’s disease, and other Neurological disorders.

Recent research, particularly on animal experimental models, has unveiled the neuroprotective properties of cannabis. This neuroprotective effect is orchestrated through numerous G protein-coupled receptors (GPCRs) and the two cannabinoid receptors, CB1 and CB2.

While the capacity of cannabinoids to safeguard neurons is evident, a significant challenge lies in determining the optimal cannabinoid receptor agonist and its application in clinical trials. The intricate interplay of cannabinoids with the endocannabinoid system, involving CB1 and CB2 receptors, underscores the need for precise understanding and targeted approaches. Unravelling the molecular intricacies of this interaction is vital to harness the therapeutic potential of cannabinoids effectively.

As the exploration of cannabis components accelerates, there is a growing awareness of the need for nuanced strategies in utilizing cannabinoid receptor agonists in clinical settings. The evolving landscape of cannabis research presents exciting possibilities for developing targeted interventions that capitalize on the neuroprotective benefits of cannabinoids while navigating the complexities of receptor specificity and clinical applicability.”

https://pubmed.ncbi.nlm.nih.gov/39410886/

https://www.eurekaselect.com/article/143747

An overview of major depression disorder: The endocannabinoid system as a potential target for therapy

pubmed logo

“Major depressive disorder is the psychiatric disease with the highest global prevalence, impacting social functioning and decreasing the quality of life. The partial pathophysiological knowledge of the disease, the economic burden and the low remission rates are sufficient justification to carry out an update on the subject in the search for new therapeutic approaches and targets.

The endocannabinoid system has been linked to the development of depression, and its stimulation or antagonism is a promising approach in the treatment of major depressive disorder.

Cannabidiol (CBD) and its properties have been widely studied recently; its analgesic, anti-inflammatory, antineoplastic and neuroprotective roles have even been reported in animal models and clinical trials, achieving its approved use for certain neurodegenerative pathologies. The use of CBD in depression biomodels and clinical trials has not been the exception, and here we contrast the current evidence of its administration and pharmacology against the pathological mechanisms of major depressive disorder.”

https://pubmed.ncbi.nlm.nih.gov/39370369/

“This focused review discusses the prevalence of major depressive disorder (MDD) globally, its impact on social functioning and quality of life, and the need for new therapeutic approaches. It highlights the role of the endocannabinoid system in MDD and the potential of cannabidiol (CBD) in treating depression due to its various beneficial properties. CBD’s effectiveness is supported by research in animal models and clinical trials, offering promise as a treatment for MDD by targeting its pathological mechanisms.”

https://onlinelibrary.wiley.com/doi/10.1111/bcpt.14089

“Antidepressant-like effect of Δ9-tetrahydrocannabinol and other cannabinoids isolated from Cannabis sativa L”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2866040/