Hippocampal CB1 Receptor mediates antidepressant-like effect of Synthetic Cannabinoid-HU210 in Acute Despair Reaction model in mice

Neuroscience Letters

“Growing evidence suggests that stress may contribute to the pathophysiology of depression. The alleviation of depressive symptoms is one of the most attractive medical applications of cannabis. Here, we investigated the antidepressant-like actions of synthetic cannabinoid-HU210 in acute despair response and explored the possible underlying mechanisms. Acute stress, induced by forced-swimming, induced depression-like behavior in the sucrose preference test (SPT). HU-210 (50 μg/kg) displayed anti-depressant like effect in the forced swim test in naïve mice and decreased depression-like behavior in the SPT, induced by forced swim stress. Pretreatment with AM251, an inhibitor of CB1R or inhibition of long-term depression (LTD) at hippocampal CA3-CA1 synapses by Tat-GluR2 attenuated the antidepressant like action of HU-210. These results indicate that HU210 produces antidepressant-like effects in acute stress and its underlying mechanism may be related to CB1R activation and hence hippocampal LTD production invivo. Synthetic cannabis or cannabis-related drugs may be used as an early intervention after acute stress exposure to prevent or at least reduce depression-like behaviors.”

https://pubmed.ncbi.nlm.nih.gov/36372093/

https://www.sciencedirect.com/science/article/abs/pii/S0304394022005146?via%3Dihub

Recent Advances in Endocannabinoid System Targeting for Improved Specificity: Strategic Approaches to Targeted Drug Delivery

ijms-logo

“Opportunities for developing innovative and intelligent drug delivery technologies by targeting the endocannabinoid system are becoming more apparent. This review provides an overview of strategies to develop targeted drug delivery using the endocannabinoid system (ECS). Recent advances in endocannabinoid system targeting showcase enhanced pharmaceutical therapy specificity while minimizing undesirable side effects and overcoming formulation challenges associated with cannabinoids. This review identifies advances in targeted drug delivery technologies that may permit access to the full pharmacotherapeutic potential of the ECS. The design of optimized nanocarriers that target specific tissues can be improved by understanding the nature of the signaling pathways, distribution in the mammalian body, receptor structure, and enzymatic degradation of the ECS. A closer look at ligand-receptor complexes, endocannabinoid tone, tissue distribution, and G-protein activity leads to a better understanding of the potential of the ECS toolkit for therapeutics. The signal transduction pathways examine the modulation of downstream effector proteins, desensitization, signaling cascades, and biased signaling. An in-depth and overall view of the targeted system is achieved through homology modeling where mutagenesis and ligand binding examine the binding site and allow sequence analysis and the formation of libraries for molecular docking and molecular dynamic simulations. Internalization routes exploring receptor-mediated endocytosis and lipid rafts are also considered for explicit signaling. Furthermore, the review highlights nanotechnology and surface modification aspects as a possible future approach for specific targeting.”

https://pubmed.ncbi.nlm.nih.gov/36362014/

“Specific targeting of the endocannabinoid system seems to be a good starting point towards developing a sophisticated cannabinoid drug design void of undesirable side effects but the future of commercialized ECS products calls for exploration from a broader perspective. Further study into the complexity of the expanded endocannabinoidome is required to consider the dynamics and interconnections it has with other regulatory systems. As the ECS is interconnected with other lipid-based signaling systems and cannabinomimetic compounds have been identified in a variety of foods, research into the link between diet and the synthesis and release of endocannabinoids and related mediators will do well to guide a better understanding of the endocannabinoidome and epigenetics of the ECS.”

https://www.mdpi.com/1422-0067/23/21/13223/htm

Endocannabinoids and related compounds as modulators of angiogenesis: Concepts and clinical significance

“Vasculogenesis (the process of differentiation of angioblasts toward endothelial cells and de novo formation of crude vascular networks) and angiogenesis (the process of harmonized sprouting and dispersal of new capillaries from previously existing ones) are two fundamentally complementary processes, obligatory for maintaining physiological functioning of vascular system. In clinical practice, however, the later one is of more importance as it guarantees correct embryonic nourishment, accelerates wound healing processes, prevents uncontrolled cell growth and tumorigenesis, contributes in supplying nutritional demand following occlusion of coronary vessels and is in direct relation with development of diabetic retinopathy. Hence, discovery of novel molecules capable of modulating angiogenic events are of great clinical importance. Recent studies have demonstrated multiple angio-regulatory activities for endocannabinoid system modulators and endocannabinoid-like molecules, as well as their metabolizing enzymes. Hence, in present article, we reviewed the regulatory roles of these molecules on angiogenesis and described molecular mechanisms underlying them.”

https://pubmed.ncbi.nlm.nih.gov/36317321/

https://onlinelibrary.wiley.com/doi/10.1002/cbf.3754

“Inhibition of tumor angiogenesis by cannabinoids”

https://pubmed.ncbi.nlm.nih.gov/12514108/

Herbal Cannabis Use Is Not Associated with Changes in Levels of Endocannabinoids and Metabolic Profile Alterations among Older Adults

life-logo

“Activation of the endocannabinoid system has various cardiovascular and metabolic expressions, including increased lipogenesis, decreased blood pressure, increased heart rate, and changes in cholesterol levels. There is a scarcity of data on the metabolic effects of exogenous cannabis in older adults; therefore, we aimed to assess the effect of exogenous cannabis on endocannabinoid levels and the association with changes in 24 h ambulatory blood pressure and lipid levels. We conducted a prospective study of patients aged 60 years or more with hypertension treated with a new prescription of herbal cannabis. We assessed changes in endocannabinoids, blood pressure, and metabolic parameters prior to and following three months of cannabis use. Fifteen patients with a mean age of 69.47 ± 5.83 years (53.3% male) underwent complete evaluations. Changes in 2-arachidonoylglycerol, an endocannabinoid, were significantly positively correlated with changes in triglycerides. Changes in arachidonic acid levels were significantly positively correlated with changes in C-reactive protein and with changes in mean diastolic blood pressure. Exogenous consumption of cannabidiol was negatively correlated with endogenous levels of palmitoylethanolamide and oleoylethanolamide. On average, cannabis treatment for 3 months does not result in a significant change in the levels of endogenous cannabinoids and thus has a safe metabolic risk profile.”

https://pubmed.ncbi.nlm.nih.gov/36294974/

“The endocannabinoid system is a complex cell-signaling system that has numerous effects on the human body, including on the heart, blood vessels, and metabolism. In this study, we aimed to assess the effects of exogenous herbal medical cannabis use on the components of the endocannabinoid system among older adults with a diagnosis of hypertension. Medical cannabis is a product containing cannabinoids used for medical purposes. Herbal cannabis contains many types of cannabinoids, the most well-known of which are Δ9-tetrahydrocannabinol and cannabidiol. We followed people aged 60 years and older and conducted a number of tests, including endocannabinoids levels, before they started using cannabis and following three months of daily cannabis treatment. Fifteen patients (53.3% male; mean age, 69.5 years) underwent complete evaluations. We found positive correlations between the components of the endocannabinoid system and blood lipids, markers of inflammation, and blood pressure. On average, cannabis treatment for 3 months does not result in a significant change in the levels of endogenous cannabinoids and thus has a safe metabolic risk profile. This study provides additional evidence for the safety of medical cannabis use among older adults.”

https://www.mdpi.com/2075-1729/12/10/1539/htm

The Therapeutic Potential of the Endocannabinoid System in Age-Related Diseases

biomedicines-logo

“The endocannabinoid system (ECS) dynamically regulates many aspects of mammalian physiology. ECS has gained substantial interest since growing evidence suggests that it also plays a major role in several pathophysiological conditions due to its ability to modulate various underlying mechanisms. Furthermore, cannabinoids, as components of the cannabinoid system (CS), have proven beneficial effects such as anti-inflammatory, immunomodulatory, neuromodulatory, antioxidative, and cardioprotective effects. In this comprehensive review, we aimed to describe the complex interaction between CS and most common age-related diseases such as neuro-degenerative, oncological, skeletal, and cardiovascular disorders, together with the potential of various cannabinoids to ameliorate the progression of these disorders. Since chronic inflammation is postulated as the pillar of all the above-mentioned medical conditions, we also discuss in this paper the potential of CS to ameliorate aging-associated immune system dysregulation.”

https://pubmed.ncbi.nlm.nih.gov/36289755/

“The cannabinoid system has the potential to ameliorate different underlying mechanism involved in the progression of aging-related diseases. Additionally, ECS may represent a promising approach not only for the treatment, but also for the alleviation of age-related disorder-associated symptoms and/or for increasing the efficacy of existing drugs. Moreover, our findings show that cannabinoids may be able to modulate various mechanisms rather than targeting a single dysregulated pathway in age-related diseases. Natural as well as synthetic cannabinoids ameliorate the balance between neurodegeneration and neuroinflammation in neurodegenerative diseases. In addition, they may play an important role in modulating the complex physio-pathology of MS and may be used as immune modulators, neuroprotectors, or remyelination promoters. The modulation of pro-inflammatory cytokines through the endogenous cannabinoid system may have beneficial effects on MS, AD, PD, aging-related musculoskeletal changes, and CVDs. On the other hand, it is clearly now that targeting the ECS with various natural or synthetic compounds may have the theoretical potential of an improved control of cancer progression.”

https://www.mdpi.com/2227-9059/10/10/2492/htm

Cannabinoids and terpenes for diabetes mellitus and its complications: from mechanisms to new therapies

Trends in Endocrinology & Metabolism (@Trends_Endo_Met) / Twitter

“The number of people diagnosed with diabetes mellitus and its complications is markedly increasing worldwide, leading to a worldwide epidemic across all age groups, from children to older adults. Diabetes is associated with premature aging. In recent years, it has been found that peripheral overactivation of the endocannabinoid system (ECS), and in particular cannabinoid receptor 1 (CB1R) signaling, plays a crucial role in the progression of insulin resistance, diabetes (especially type 2), and its aging-related comorbidities such as atherosclerosis, nephropathy, neuropathy, and retinopathy. Therefore, it is suggested that peripheral blockade of CB1R may ameliorate diabetes and diabetes-related comorbidities. The use of synthetic CB1R antagonists such as rimonabant has been prohibited because of their psychiatric side effects. In contrast, phytocannabinoids such as cannabidiol (CBD) and tetrahydrocannabivarin (THCV), produced by cannabis, exhibit antagonistic activity on CB1R signaling and do not show any adverse side effects such as psychoactive effects, depression, or anxiety, thereby serving as potential candidates for the treatment of diabetes and its complications. In addition to these phytocannabinoids, cannabis also produces a substantial number of other phytocannabinoids, terpenes, and flavonoids with therapeutic potential against insulin resistance, diabetes, and its complications. In this review, the pathogenesis of diabetes, its complications, and the potential to use cannabinoids, terpenes, and flavonoids for its treatment are discussed.”

https://pubmed.ncbi.nlm.nih.gov/36280497/

“Cannabis components (phytocannabinoids and terpenes) may exert antagonistic activity on CB1R signaling without causing deleterious side effects. Hence, phytocannabinoids and terpenes may be excellent potential candidates for the treatment of diabetes and its complications.”

https://www.cell.com/trends/endocrinology-metabolism/fulltext/S1043-2760(22)00162-X?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS104327602200162X%3Fshowall%3Dtrue

Use of Cannabis and Cannabinoids for Treatment of Cancer

cancers-logo

“The endocannabinoid system (ECS) is an ancient homeostasis mechanism operating from embryonic stages to adulthood. It controls the growth and development of many cells and cell lineages. Dysregulation of the components of the ECS may result in uncontrolled proliferation, adhesion, invasion, inhibition of apoptosis and increased vascularization, leading to the development of various malignancies. Cancer is the disease of uncontrolled cell division.

In this review, we will discuss whether the changes to the ECS are a cause or a consequence of malignization and whether different tissues react differently to changes in the ECS. We will discuss the potential use of cannabinoids for treatment of cancer, focusing on primary outcome/care-tumor shrinkage and eradication, as well as secondary outcome/palliative care-improvement of life quality, including pain, appetite, sleep, and many more factors. Finally, we will complete this review with the chapter on sex- and gender-specific differences in ECS and response to cannabinoids, and equality of the access to treatments with cannabinoids.”

https://pubmed.ncbi.nlm.nih.gov/36291926/

“Cancer is a disease which affects approximately 40% of people in their lifetime. Chemotherapy, the primary choice for treatment of cancer, is often ineffective or/and presents itself with many debilitating side effects, including loss of appetite, nausea, insomnia, and anxiety. Components of cannabis extracts, including cannabinoids and terpenes, may present an alternative for controlling side effects and may be used for tumor shrinkage together with chemodrugs.

Cannabinoids act on so called endocannabinoid system (ECS) that operates in our body to maintain homeostasis. ECS promotes healthy development of tissues and regulates many processes in our organism and when disbalanced may lead to disease, including cancer. In this review, we will discuss the role of the ECS in relation with carcinogenesis and use of cannabis extracts and their components for primary and secondary care of cancer.

Knowledge about the use of cannabinoids for cancer therapy may prolong the life of many cancer patients.

Here, we showed substantial preclinical and clinical evidence of the potential of cannabinoids and cannabis extracts in primary and palliative care of cancer.”

https://www.mdpi.com/2072-6694/14/20/5142/htm

The Synthetic Cannabinoid URB447 Exerts Antitumor and Antimetastatic Effect in Melanoma and Colon Cancer

pharmaceuticals-logo

“The endocannabinoid system is widespread through the body and carries out a wide variety of functions. However, its involvement in other pathologies, such as cancer, still needs further attention. We aim to investigate the role of CB2 receptor during melanoma and colorectal cancer (CRC) aggressiveness and metastatic growth in the liver. We used the synthetic cannabinoid URB447, a known CB2 agonist and CB1 antagonist drug, and studied prometastatic ability of mouse B16 melanoma and MCA38 CRC cells, by means of proliferation, apoptosis, cell cycle, migration and matrix degradation in vitro upon URB447 treatment. We reported a dose-dependent viability decrease in both tumor types. This result is partly mediated by apoptotic cell death and cell cycle arrest in G1/G0 phase, as observed through flow cytometry. Melanoma and CRC cell migration was affected in a dose-dependent fashion as observed through scratch assay, whereas the secretion of matrix degrading proteins metalloprotease 2 (MMP2) and 9 (MMP9) in tumor cells did not significantly change. Moreover, daily treatment of tumor bearing mice with URB447 decreased the development of liver metastasis in a melanoma model in vivo. This proof of concept study points out to the synthetic cannabinoid URB447 as a potential candidate for deeper studies to confirm its potential as antitumor therapy and liver metastasis treatment for CRC and melanoma.”

https://pubmed.ncbi.nlm.nih.gov/36297277/

https://www.mdpi.com/1424-8247/15/10/1166/htm

Targeting the cannabinoid system to counteract the deleterious effects of stress in Alzheimer’s disease

Frontiers - Crunchbase Company Profile & Funding

“Alzheimer’s disease is a progressive neurodegenerative disorder characterized histologically in postmortem human brains by the presence of dense protein accumulations known as amyloid plaques and tau tangles. Plaques and tangles develop over decades of aberrant protein processing, post-translational modification, and misfolding throughout an individual’s lifetime. We present a foundation of evidence from the literature that suggests chronic stress is associated with increased disease severity in Alzheimer’s patient populations. Taken together with preclinical evidence that chronic stress signaling can precipitate cellular distress, we argue that chronic psychological stress renders select circuits more vulnerable to amyloid- and tau- related abnormalities. We discuss the ongoing investigation of systemic and cellular processes that maintain the integrity of protein homeostasis in health and in degenerative conditions such as Alzheimer’s disease that have revealed multiple potential therapeutic avenues. For example, the endogenous cannabinoid system traverses the central and peripheral neural systems while simultaneously exerting anti-inflammatory influence over the immune response in the brain and throughout the body. Moreover, the cannabinoid system converges on several stress-integrative neuronal circuits and critical regions of the hypothalamic-pituitary-adrenal axis, with the capacity to dampen responses to psychological and cellular stress. Targeting the cannabinoid system by influencing endogenous processes or exogenously stimulating cannabinoid receptors with natural or synthetic cannabis compounds has been identified as a promising route for Alzheimer’s Disease intervention. We build on our foundational framework focusing on the significance of chronic psychological and cellular stress on the development of Alzheimer’s neuropathology by integrating literature on cannabinoid function and dysfunction within Alzheimer’s Disease and conclude with remarks on optimal strategies for treatment potential.”

https://pubmed.ncbi.nlm.nih.gov/36268196/

https://www.frontiersin.org/articles/10.3389/fnagi.2022.949361/full

Anti-cancer effects of selective cannabinoid agonists in pancreatic and breast cancer cells

“Objective: Cancer ranks first among the causes of morbidity and mortality all over the world, and it is expected to continue to be the main cause of death in the coming years. Therefore, new molecular targets and therapeutic strategies are urgently needed. In many cases, some reports show increased levels of endocannabinoids and their receptors in cancer, a condition often associated with tumour aggressiveness. Recent studies have suggested that cannabinoid-1/2 receptors contribute to tumour growth in a variety of cancers, including pancreatic, colon, prostate, and breast cancer. Understanding how cannabinoids can regulate key cellular processes involved in tumorigenesis, such as: cell proliferation and cell death, is crucial to improving existing and new therapeutic approaches for the cancer patients. The present study was aimed to characterize the in-vitro effect of L-759633 (a selective CB2 receptor agonist), ACPA (a selective CB1 receptor agonist) and ACEA (a selective CB1 receptor agonist) on the cell proliferation, clonogenicity, and apoptosis in pancreatic (PANC1) and breast (MDA-MB-231) cancer cells.

Methods: The viability and/or proliferation of cells were detected by MTS assay. A clonogenic survival assay was used to detect the ability of a single cell to grow into a colony. Apoptosis was determined with Annexin V staining (Annexin V-FITC/PI test) and by analyzing the expression of Bcl-2-associated X protein (Bax) and B-cell lymphoma 2 (Bcl-2).

Results: We found that selective CB1/2 agonists suppressed cell proliferation, clonogenicity and induced proapoptotic function in human PANC1 pancreatic and MDA-MB-231 breast cancer cells. Based on our findings, these agonists led to the inhibition of both cell viability and clonogenic growth in a dose dependent manner. CB1/2 agonists were observed to induce intrinsic apoptotic pathway by upregulating Bax, while downregulating Bcl-2 expression levels.

Conclusion: Our data suggests that CB1/2 agonists have the therapeutic potential through the inhibition of survival of human PANC1 pancreatic and MDA-MB-231 breast cancer cells and also might be linked with further cellular mechanisms for the prevention.”

https://pubmed.ncbi.nlm.nih.gov/36254639/

http://www.elis.sk/index.php?page=shop.product_details&flypage=flypage.tpl&product_id=7812&category_id=179&option=com_virtuemart&vmcchk=1&Itemid=1

“Analysis of Anti-Cancer and Anti-Inflammatory Properties of 25 High-THC Cannabis Extracts”

https://pubmed.ncbi.nlm.nih.gov/36144796/