The Role of the Endocannabinoid System in the Mechanism of Action of Nonopioid Analgesics

pubmed logo

“The endocannabinoid system (eCBS) plays a crucial role in pain modulation through its components, including endocannabinoids, cannabinoid receptors (CB1 and CB2), and metabolic enzymes.

Recent research highlights the interaction between the eCBS and non-opioid analgesics, including nonsteroidal anti-inflammatory drugs (NSAIDs), acetaminophen, and pyrazolones. These agents may enhance endogenous endocannabinoid levels or influence eCBS signaling pathways, providing a multifaceted approach to pain relief.

This review examines the pharmacological mechanisms underlying these interactions, focusing on the potential of non-opioid eCBS interactions, detailing synergistic effects that could improve analgesic efficacy while minimizing side effects. Additionally, we explore the therapeutic implications of co-administering non-opioid analgesics with eCBS modulators to create more effective pain management strategies.

The combined modulation of non-opioid pathways and the eCBS represents a promising treatment for acute and chronic pain, warranting further clinical investigation and translational research in this evolving field.”

https://pubmed.ncbi.nlm.nih.gov/40659176/

“Emerging Therapeutic Strategies: The integration of non-opioid medications with eCBS modulators represents a novel approach in pain management strategies, aiming to minimize opioid use while maximizing therapeutic efficacy and safety profiles during chronic pain management.”

https://www.sciencedirect.com/science/article/abs/pii/S0014299925007009?via%3Dihub

Dysregulation of the Cannabinoid System in Childhood Epilepsy: From Mechanisms to Therapy

pubmed logo

“Epilepsy affects over 12 million children worldwide, with approximately 30% classified as having drug-resistant epilepsy (DRE), often accompanied by neuropsychiatric comorbidities that severely impact quality of life.

The endocannabinoid system (ECS) functions as a multifaceted neuromodulatory network regulating neuronal excitability, synaptic plasticity, and immune homeostasis from early life through adolescence and into aging. In pediatric epilepsies, alterations in ECS components, particularly CB1 receptor expression and endocannabinoid levels, reveal disorder-specific vulnerabilities and therapeutic opportunities.

Cannabidiol (CBD), a non-psychoactive compound from Cannabis sativa, has shown strong preclinical and clinical efficacy in treating DRE and is approved for Dravet syndrome, Lennox-Gastaut syndrome, and Tuberous Sclerosis Complex. Other ECS-based strategies, such as the use of CB1 receptor-positive allosteric modulators, can selectively enhance endogenous cannabinoid signaling where and when it is active, potentially reducing seizures in conditions like Dravet and absence epilepsy. Similarly, FAAH and MAGL inhibitors may help restore ECS tone without directly activating CB1 receptors.

Precision targeting of ECS components based on regional expression and syndrome-specific pathophysiology may optimize seizure control and associated comorbidities. Nonetheless, long-term pediatric use must be approached with caution, given the critical role of the ECS in brain development.”

https://pubmed.ncbi.nlm.nih.gov/40650012/

“In conclusion, alterations in the ECS are likely involved in the pathophysiology of childhood epilepsy. Precision targeting of ECS components, considering regional CB1R density, fluctuating eCB levels, and syndrome-specific ECS pathophysiology, may offer a more rational and safer strategy for pediatric epilepsy cases with multifactorial etiologies. “

https://www.mdpi.com/1422-0067/26/13/6234

Long-term cannabinoid therapy can ameliorate chronic sleep deprivation-induced behavioral and neuroinflammatory changes in mice

pubmed logo

“Endocannabinoid system is an important contributor to body’s immune responses which are significantly impaired by chronic sleep deprivation (cSD). Although cannabinoids can modulate the endocannabinoid system, most are understudied, especially regarding cSD.

To investigate the therapeutic potential of CBD, CBG, CBC and their combinations, current study analyzed cSD-induced memory impairment, depression, microglial responses, cytokine profile and therapeutic effects of cannabinoid treatments using behavioral test and ELISA. Furthermore, molecular docking of these cannabinoids was performed to deduce the binding affinity with cannabinoid receptors and possible entrouge effects.

The results showed that memory impairment and depression were more evident in cSD groups. Moreover, microglial activation and pro-inflammatory polarization was also more evident and was supported by increased pro-inflammatory cytokine concentrations in cSD groups.

These changes were significantly reversed the cannabinoid groups but the combination of CBD + CBC was more effective than other treatments in reversing these cSD-induced behavioral and neuroinflammatory changes. Whereas, the molecular docking results also corroborated with the neuroimmunological changes observed in the current study, pointing towards the possible therapeutic role.

SIGNIFICANCE STATEMENT: Chronic SD employs microglial activation/polarization, to exert behavioral impairments and neuroinflammation.

This study signifies the therapeutic potential of proper sleep and cannabinoid intake.”

https://pubmed.ncbi.nlm.nih.gov/40628367/

“This study demonstrates the therapeutic efficacy of cannabinoid treatments in ameliorating cSD-induced behavioral and neuroinflammatory alterations. Notably, a multiple-compound treatment of CBD and CBC exhibited superior effectiveness compared to single-compound treatments. These findings suggest potential avenues for developing effective interventions against cSD-induced detrimental changes.”

https://www.sciencedirect.com/science/article/abs/pii/S0304394025002022?via%3Dihub

Treatment of Migraine With Phytocannabinoids, the Involvement of Endocannabinoids in Migraine, and Potential Mechanisms of Action

pubmed logo

“The American Migraine Foundation estimates that over 39 million Americans and over 1 billion people worldwide suffer from some form of migraine. Treatment of migraine generally falls into two categories: treatment of attacks once they have begun, and prophylactic prevention, including lifestyle changes. The use of phytocannabinoids to reduce both the frequency and severity of migraine is widely documented in scientific, grey, and popular literature. This review provides descriptions of both preclinical and clinical studies involving the treatment of migraines with phytocannabinoids as well as the involvement of endocannabinoids and endocannabinoid-like compounds in migraine pathology, including the receptors and associated mechanisms. Currently unanswered questions and areas for further exploration are discussed.”

https://pubmed.ncbi.nlm.nih.gov/40630421/

“The clinical studies published to date strongly suggest that phytocannabinoids are useful for mitigating migraine pain and for migraine prophylaxis. Further, studies show the potential for endocannabinoid and endocannabinoid-like compounds in migraine treatment.”

https://onlinelibrary.wiley.com/doi/10.1155/prm/7181066

“Migraine, fibromyalgia, IBS and related conditions display common clinical, biochemical and pathophysiological patterns that suggest an underlying clinical endocannabinoid deficiency that may be suitably treated with cannabinoid medicines.”

https://pubmed.ncbi.nlm.nih.gov/15159679/

A 1:1 combination of cannabidiol and Δ9-tetrahydrocannabinol inhibit toll-like receptor 7- and 8-mediated inflammation in human immune cells

pubmed logo

“Cannabinoid regulation of endosomal signalling via innate immune toll-like receptors (TLRs) is understudied. Endosomal cell signalling via TLR7 and TLR8 governs cellular responses to infection with viral and bacterial single-stranded RNA. TLR7/8 activation is associated with neuroinflammation, with inappropriate activation of TLR7/8 linked to the propagation of autoimmune disease. Following activation, TLR7 and TLR8 control the cellular production of cytokines, chemokines and type I interferons (IFNs).

In this study we focused on two clinically relevant plant-derived (phyto) cannabinoids, cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), given that cannabinoid-based therapeutics containing these compounds are currently available in the form of sativex® (nabiximols) and epidiolex®. The study aim was to determine the anti-inflammatory effects of CBD and THC, when delivered in isolation and in a sativex-like combination (1:1), on TLR7/8-induced inflammation in immune cells.

We employed the use of CL075 (3M-002), a thiazoloquinolone derivative that acts as an agonist of both TLR7 and TLR8. Using THP-1-derived macrophages and primary peripheral blood mononuclear cells (PBMCs) from healthy control subjects, we demonstrate that TLR7/8 activation promoted the time- and concentration-dependent production of the chemokine CXCL10, cytokine TNFα and type I IFNs in both macrophages and PBMCs. TLR7/8 activation promoted nuclear factor (NF)-κB activation, p38 MAPK phosphorylation and the transcription of interferon regulator factor 7 (IRF7).

We assessed the anti-inflammatory effects of CBD and THC, when delivered alone and in a 1:1 combination, on CL075-stimulated inflammatory mediator production in macrophages/PBMCs. Data presented herein indicate that CBD and THC, particularly when delivered in a 1:1 combination, can act as TLR7/8 immunomodulatory drugs to dampen inflammation in macrophages and PBMCs.

This study provides evidence that phytocannabinoids target TLR7/8-induced viral signalling on endosomal compartments to control inflammation in immune cells.”

https://pubmed.ncbi.nlm.nih.gov/40615103/

“The significant finding is that CBD and THC can differentially ameliorate TLR7/8-induced inflammation in immune cells, depending on whether the cannabinoids are administered alone or in combination. In particular, the 1:1 combination of CBD:THC (at 10 μM) was consistently anti-inflammatory in immune cells stimulated with CL075. The CB1, CB2, PPAR-γ and A2A receptors do not mediate the anti-inflammatory propensity of the phytocannabinoids in our cell models of inflammation.

Overall, data presented herein identifies TLR7/8-mediated inflammation as a phytocannabinoid target, and gives important insight regarding the cellular mechanisms by which CBD and THC regulate inflammation.”

https://www.sciencedirect.com/science/article/pii/S0014299925006326?via%3Dihub

The endocannabinoidome-gut microbiome-brain axis as a novel therapeutic target for autism spectrum disorder

pubmed logo

“Introduction: Autism spectrum disorder (ASD) is characterized by disruption of the gut-brain axis, which leads to behavioral, psychiatric, metabolic and gastrointestinal symptoms. Effective ASD treatments are limited. Research highlights the roles of the endocannabinoidome (eCBome) and gut microbiome (GM), both crucial for brain and gut function. This review summarizes research on therapeutic targets within the eCBome-GM-brain axis for ASD and related comorbidities.

Discussion: Evidence suggests that reduced levels of eCBome mediators, like oleoylethanolamide and anandamide, and altered cannabinoid type 1 and type 2 (CB1 and CB2) receptors activity may contribute to ASD symptoms, making them promising targets. Modulating the eCBome-GM-brain axis with inhibitors of fatty acid amide hydrolase (FAAH), transient receptor potential vanilloid 1, and monoacylglycerol lipase (MAGL) may improve repetitive, stereotypical, and sensory behaviors, and alleviate sociability impairments, depression and anxiety. However, inhibition of FAAH and MAGL may also induce ADHD-like behaviors, which can be reversed by CB1 inverse agonists. Targeting metabotropic glutamate receptor 5 to increase levels of the eCBome mediator 2-arachidonoylglycerol (2-AG) may benefit ASD-related behaviors. eCBome mediators such as 2-AG, 1/2-palmitoylglycerol and palmitoylethanolamide may also help manage ASD- and GI-related symptoms, and systemic inflammation. Other potential therapeutic targets that deserve further investigation are eCBome-related receptors G-protein-coupled receptor 55 and peroxisome proliferator-activated receptors-alpha and -gamma, and the cyclooxygenase-2/prostaglandin E2 pathway, which may address hyperactivity and repetitive behaviors. Additionally, mucin-degrading genera like Akkermansia and Ruminococcus may improve ASD-related GI symptoms such as hypersensitivity and inflammation. Selective antibiotics against specific Clostridium strains may improve irritability and aggression. In ASD with ADHD and OCD, treatments may involve modulating the CB1 and CB2 receptor, and bacterial families like Ruminococcaceae and Lachnospiraceae. Lastly, modulating the abundance of anti-inflammatory genera like Prevotella and Anaeroplasma, and taxa associated with gut health such as Roseburia may also offer therapeutic value.

Conclusion: The eCBome-GM-brain axis is a promising target for ASD treatment, meriting further clinical and preclinical research.”

https://pubmed.ncbi.nlm.nih.gov/40605060/

“In conclusion, the eCBome–GM–brain axis represents a promising, multifaceted therapeutic target for ASD and its comorbidities, warranting further clinical and preclinical research to clarify its therapeutic potential and refine targeted interventions.”

https://jbiomedsci.biomedcentral.com/articles/10.1186/s12929-025-01145-7

Cannabinoid receptor ligands with potential therapeutic applications and mechanisms of action: a versatile natural therapeutic agent

pubmed logo

“The endocannabinoid system (ECS) is a complex signaling network essential for regulating various physiological processes in the body. Selective cannabinoid receptor ligands have been developed to modulate specific ECS signaling pathways, offering potential therapeutic benefits. These ligands, with high selectivity and affinity for cannabinoid receptors, demonstrate potential in managing diverse medical conditions. Standardizing dosing is crucial to ensure reliable therapeutic effects, as cannabinoids may exhibit biphasic effects. Combination strategies involving both CB1 and CB2 receptor modulation show promise in managing complex conditions, including chronic pain, autoimmune disorders, and neurodegenerative diseases.”

https://pubmed.ncbi.nlm.nih.gov/40600897/

https://www.tandfonline.com/doi/full/10.1080/10286020.2025.2522396

Neutrophil extracellular traps and cannabinoids: potential in cancer metastasis

pubmed logo

“Cancer is the second leading cause of global mortality after cardiovascular diseases, with breast, lung, colon, and prostate cancers being the most common. WHO projects around 30 million new cancer cases worldwide by 2045, with breast cancer being the most common in women and lung cancer in men.

Metastasis is responsible for nearly 90% of cancer-related deaths. Breast and lung cancers tend to metastasize to the bones, lymph nodes, lungs, liver, and brain. Lungs remains one of the most common organs to which various forms of cancer metastasize.

An important factor in metastasis is NETosis – it can initially help to eliminate cancer cells, but it can also promote metastasis. Phytocannabinoids, compounds derived from Cannabis sativa, and the endocannabinoid system (ECS) offer promising therapeutic potential to inhibit NETosis and consequently cancer development and metastasis.

Although the precise effects of phytocannabinoids on neutrophil functions and NETosis are not fully understood and require further research in the context of cancer, preliminary studies suggest their potential to inhibit NET release in various disease models.

This review consolidates current knowledge and provides new insights into how phytocannabinoids and the ECS may serve as effective therapeutic tools to limit cancer metastasis.”

https://pubmed.ncbi.nlm.nih.gov/40599866/

“Research indicates that metastatic progression is responsible for most deaths caused by breast cancer, with metastatic processes accounting for nearly 90% of cancer-related mortality.”

“Phytocannabinoids, together with the endocannabinoid system (ECS), represent a highly promising therapeutic avenue for attenuating neutrophil effector functions, particularly the process of NETosis.

We believe that these compounds have significant potential as agents capable of effectively inhibiting metastatic progression.

Phytocannabinoids, derived primarily from the Cannabis sativa plant, are a group of organic compounds that interact with the endocannabinoid system (ECS) in the human body.”

“Both phytocannabinoids and the endocannabinoid system (ECS) show significant therapeutic potential in cancer treatment. Research indicates that these agents affect the proliferation, apoptosis, migration, and invasiveness of cancer cells. In addition, they modulate the tumor microenvironment, particularly the cells of the immune system.”

https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2025.1595913/full

Differential metabolic pathways underlie THC- and CBD-mediated inhibition of B-cell activation in both young and aged mice

pubmed logo

“Objective: B lymphocytes play a crucial role in immunity but also contribute to the pathogenesis of various diseases. Cannabis plants produce numerous biologically active compounds, including cannabinoids. The two most studied phytocannabinoids are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). These cannabinoids exert diverse and potent biological effects primarily through the endocannabinoid system (ECS), which also plays a key role in mature B-cell function. Both the immune system and the ECS undergo age-related changes that lead to a clinically significant decline in function.

Methods: This study compares the effects of THC and CBD on B-cell activity in young and aged mice. Murine B lymphocytes were activated using lipopolysaccharide (LPS) and interleukin-4 (IL-4), and the impact of cannabinoid treatments was assessed in terms of cell phenotype, proliferation, antibody secretion, tumor necrosis factor-alpha (TNFα) secretion, extracellular signal-regulated kinase (ERK) phosphorylation, and the cellular metabolome.

Results: Both THC and CBD exhibited dose-dependent inhibitory effects on B-cell activation in young and aged mice. However, we show here, for the first time, that the treatments induce distinct metabolic profiles. Although some metabolites, such as glucose-6-phosphate, pentose phosphate pathway (PPP) and nucleotide metabolites, were reduced by both cannabinoids, THC selectively reduced the levels of a distinct set of amino acids, while only CBD increased the levels of Citrulline and Allantoin. Additionally, the effects of THC and CBD differed between young and aged B cells, suggesting that age-related changes in the ECS may influence cannabinoid sensitivity.

Conclusions: These findings provide insights into the distinct mechanisms by which THC and CBD regulate immune activation and may open the door for investigating the mechanisms behind cannabinoids effects on the immune system. They also highlight the need for further research into phytocannabinoid-based therapies, particularly in age-specific contexts. Given the immunoregulatory properties of cannabinoids, especially CBD, tailored therapeutic strategies may enhance their clinical applications.”

https://pubmed.ncbi.nlm.nih.gov/40599768/

“These findings emphasize the need for further investigation into phytocannabinoid-based therapies, particularly for age-specific applications. Given the immunoregulatory properties of cannabinoids, especially CBD, tailored therapeutic strategies may be developed to optimize their clinical use.”

https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2025.1605474/full

Cannabidiol attenuates methamphetamine-induced oxidative neurotoxicity via regulating transient receptor potential vanilloid type 1

pubmed logo

“Background: The prevalence of methamphetamine (METH) abuse has significantly escalated in many regions worldwide. Despite this increase, the complexity of neurotoxicity associated with METH is inadequately understood. Cannabidiol (CBD), a non-addictive plant ingredient in cannabis, has been used in preclinical and clinical studies for treating various neuropsychiatric disorders, but the mechanism by which CBD exerts therapeutic effects is still unclear.

Purpose: This work aims to explore the mechanism of transient receptor potential vanilloid type 1 (TRPV1) mediates oxidative neurotoxicity in the context of METH exposure and reveal the therapeutic target of CBD for METH-induced oxidative neurotoxicity.

Results: In the hippocampus and medial prefrontal cortex of METH users, overactivation of TRPV1, intracellular Ca2+ overload, increased oxidative stress, and elevated apoptosis were observed compared to control individuals. Molecular docking and surface plasmon resonance (SPR) detection results indicated that CBD binds to human TRPV1. In addition, METH induced Ca2+ influx, oxidative stress, cell damage, and TRPV1 activation in HT-22 cells, which were mitigated by TRPV1 knockdown or CBD pretreatment. CBD pretreatment also blocked TRPV1 agonist capsaicin-induced Ca2+ influx, oxidative stress, cell damage, and TRPV1 activation in HT-22 cells. Furthermore, METH triggered stereotyped behavior, spatial memory impairment, TRPV1 activation, Ca2+ overload, apoptosis, and oxidative stress in the hippocampus, which were attenuated by CBD pretreatment in mice. Finally, hippocampal TRPV1 knockdown reduced METH-induced stereotyped behavior and spatial memory impairment in mice, blocked METH-induced apoptosis and oxidative stress in the hippocampus of mice.

Conclusion: METH induces oxidative neurotoxicity via activating TRPV1-dependent Ca2+ influx, oxidative stress, and apoptosis, while CBD inhibits METH-induced oxidative neurotoxicity by regulating TRPV1. This study establishes CBD as a therapeutic intervention for METH use disorders.”

https://pubmed.ncbi.nlm.nih.gov/40582208/

“In summary, our results suggest that METH induced oxidative neurotoxicity by activating TRPV1-dependent Ca2+ influx, oxidative stress, and apoptosis, while CBD pretreatment inhibited METH-induced oxidative neurotoxicity by regulating TRPV1.”

https://www.sciencedirect.com/science/article/abs/pii/S0944711325006543?via%3Dihub