Effects of Cannabidiol on Bone Quality in Ovariectomized Rats

pubmed logo

“The incidence of osteoporosis and related fractures increases significantly with age, impacting public health and associated costs. Postmenopausal osteoporosis results from increased bone resorption due to decreased estrogen levels.

The endocannabinoid system, especially cannabidiol (CBD), has shown therapeutic potential in modulating bone formation. This study investigated the effects of administration of CBD in rats after the onset of with ovariectomy-induced osteopenia (OVX).

Forty-eight female Sprague‒Dawley rats were divided into four groups (n = 12): OVX + CBD, SHAM + CBD, OVX + vehicle, and SHAM + vehicle. CBD was administered intraperitoneally for 3 weeks. After euthanasia, the bone quality, mechanical properties, and bone microarchitecture of the femurs and lumbar vertebrae were assessed by microcomputed tomography (micro-CT), bone densitometry, mechanical tests, and histological and immunohistochemical analyses.

CBD treatment improved the bone mineral density (BMD) of the lumbar vertebrae and increased the BV/TV% and Tb.N in the femoral neck. There were also improvements in the mechanical properties, such as the maximum force and stiffness of the femurs and vertebrae. CBD significantly increased the bone matrix in osteopenic femurs and vertebrae, Although did not significantly influence the expression of RANKL and OPG, in ovariectomized animals, there was an increase in osteoblasts and a decrease in osteoclasts.

Determining the optimal timing for CBD use in relation to postovariectomy bone loss remains a crucial issue. Understanding when and how CBD can be most effective in preventing or treating bone loss is essential to emphasize the importance of early diagnosis and treatment of osteoporosis. However, further studies are needed to explore in more detail the efficacy and safety of CBD in the treatment of postmenopausal osteoporosis.”

https://pubmed.ncbi.nlm.nih.gov/39245783/

https://link.springer.com/article/10.1007/s00223-024-01281-6

Mechanistic Insights into the Impact of WIN 55, 212-2, a Synthetic Cannabinoid, on Adhesion Molecules PECAM-1 and VE-cadherin in HeLa Cells: Implications on Cancer Processes

pubmed logo

“The endocannabinoid (eCB) system comprises endogenous ligands, cannabinoid receptors (CBRs) and proteins involved in their regulation; its alteration leads to many diseases including cancer. Thus, becomes a therapeutic target for synthetic cannabinoids aimed to control cancer cell proliferation, migration, adhesion and invasion. However, little is known about adhesion molecules regulation through CBRs activation.

Consequently, the aim of this study was to evaluate the effects of a CB1/CB2 agonist, WIN-55, 212-2 (WIN), on the regulation of adhesion molecules PECAM-1 and VE-cadherin in HeLa cells. CBRs expression was evaluated by immunofluorescence staining in HeLa cells. Cell viability by MTT, cell adhesion by crystal violet, adhesion molecules expression and location by Western blot and immunofluorescence staining assays were assessed on cells treated with different WIN concentrations.

Results show that CB1, CB2 and GPR55 receptors are expressed in HeLa cells. Additionally, biphasic effects were observed in their metabolic activity and adhesive properties: low WIN concentrations significantly increased them, in contrast, were decreased at high ones as compared to controls (p < 0.0001), demonstrating that WIN elicits opposite effects depending on the concentration and exposure time. PECAM-1 was detected in cytoplasm, membrane and perinuclear region of HeLa cells, whereas VE-cadherin had a nuclear distribution. There were not significant differences in PECAM-1 and VE-cadherin expression and location, suggesting that WIN does not modulate these proteins.

These findings support the potential use of WIN due to its anticancer properties without dysregulating adhesion molecules. WIN possible contribution to inhibit cancer progression should be further investigated.”

https://pubmed.ncbi.nlm.nih.gov/39228102/

https://www.tandfonline.com/doi/full/10.1080/15376516.2024.2399132

A Comprehensive Exploration of the Multifaceted Neuroprotective Role of Cannabinoids in Alzheimer’s Disease across a Decade of Research

pubmed logo

“Alzheimer’s disease (AD), a progressive neurodegenerative disorder, manifests through dysregulation of brain function and subsequent loss of bodily control, attributed to β-amyloid plaque deposition and TAU protein hyperphosphorylation and aggregation, leading to neuronal death.

Concurrently, similar cannabinoids to the ones derived from Cannabis sativa are present in the endocannabinoid system, acting through receptors CB1R and CB2R and other related receptors such as Trpv-1 and GPR-55, and are being extensively investigated for AD therapy.

Given the limited efficacy and adverse effects of current available treatments, alternative approaches are crucial. Therefore, this review aims to identify effective natural and synthetic cannabinoids and elucidate their beneficial actions for AD treatment. PubMed and Scopus databases were queried (2014-2024) using keywords such as “Alzheimer’s disease” and “cannabinoids”.

The majority of natural (Δ9-THC, CBD, AEA, etc.) and synthetic (JWH-133, WIN55,212-2, CP55-940, etc.) cannabinoids included showed promise in improving memory, cognition, and behavioral symptoms, potentially via pathways involving antioxidant effects of selective CB1R agonists (such as the BDNF/TrkB/Akt pathway) and immunomodulatory effects of selective CB2R agonists (TLR4/NF-κB p65 pathway).

Combining anticholinesterase properties with a cannabinoid moiety may enhance therapeutic responses, addressing cholinergic deficits of AD brains. Thus, the positive outcomes of the vast majority of studies discussed support further advancing cannabinoids in clinical trials for AD treatment.”

https://pubmed.ncbi.nlm.nih.gov/39201317/

“As understood from the above, cannabinoids exhibit efficacy in reversing several of the manifestations of AD.”

https://www.mdpi.com/1422-0067/25/16/8630

Circulating endocannabinoid levels in SARS-CoV-2 infection and their potential role in the inflammatory response

pubmed logo

“Plasma levels of endocannabinoids (eCBs) are very dynamic and variable in different circumstances and pathologies. The aim of the study was to determine the levels of the main eCBs and N-acylethanolamines (NAEs) in COVID-19 patients during the acute and post-acute phase of SARS-CoV-2 infection. Samples collected before December 31, 2020 were used for the determination of circulating eCB levels by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The association between plasma eCB measurements and biochemical and hematological parameters, as well as serum IL-6 levels, was evaluated. Samples of 64 individuals were analysed, n = 18 healthy donors, n = 30 acute, and n = 16 post-acute patients. Plasma levels of 2-arachidonoylglycerol (2-AG), were significantly elevated in COVID-19 patients when compared to healthy individuals. Plasma N-palmitoylethanolamide (PEA) and N-arachidonoylethanolamide (AEA) levels were found to be decreased in post-acute patient samples. These results suggest that 2-AG plays an important role in the inflammatory cascade in COVID-19 disease; in addition, eCBs might be involved in the post-acute pathogenesis of COVID-19. This study provides evidence of altered levels of circulating eCBs as a consequence of SARS-CoV-2 infection.”

https://pubmed.ncbi.nlm.nih.gov/39174572/

“This study shows that circulating eCBs have been altered following SARS-CoV-2 infection. These variations mainly concern 2-AG that showed increased levels that persisted even 30–60 days post-infection. Further studies are needed to address the potential role of the ECS in the SARS-CoV-2 inflammatory response and its potential role in long COVID development.”

https://www.nature.com/articles/s41598-024-70172-5

Cannabinoids and triple-negative breast cancer treatment

pubmed logo

“Triple-negative breast cancer (TNBC) accounts for about 10-20% of all breast cancer cases and is associated with an unfavorable prognosis. Until recently, treatment options for TNBC were limited to chemotherapy. A new successful systemic treatment is immunotherapy with immune checkpoint inhibitors, but new tumor-specific biomarkers are needed to improve patient outcomes.

Cannabinoids show antitumor activity in most preclinical studies in TNBC models and do not appear to have adverse effects on chemotherapy.

Clinical data are needed to evaluate efficacy and safety in humans. Importantly, the endocannabinoid system is linked to the immune system and immunosuppression. Therefore, cannabinoid receptors could be a potential biomarker for immune checkpoint inhibitor therapy or a novel mechanism to reverse resistance to immunotherapy. In this article, we provide an overview of the currently available information on how cannabinoids may influence standard therapy in TNBC.”

https://pubmed.ncbi.nlm.nih.gov/39176080/

“Selective CB2R agonists and antagonists are needed to develop potential anti-cancer drugs that target the endocannabinoid system,”

https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2024.1386548/full

Bioelectronic sensing platform emulating the human endocannabinoid system for assessing and modulating of cannabinoid activity

pubmed logo

“Cannabinoids are involved in physiological and neuromodulatory processes through their interactions with the human cannabinoid receptor-based endocannabinoid system. Their association with neurodegenerative diseases and brain reward pathways underscores the importance of evaluating and modulating cannabinoid activity for both understanding physiological mechanisms and developing therapeutic drugs. The use of agonists and antagonists could be strategic approaches for modulation.

In this study, we introduce a bioelectronic sensor designed to monitor cannabinoid binding to receptors and assess their agonistic and antagonistic properties. We produced human cannabinoid receptor 1 (hCB1R) via an Escherichia coli expression system and incorporated it into nanodiscs (NDs). These hCB1R-NDs were then immobilized on a single-walled carbon nanotube field-effect transistor (swCNT-FET) to construct a bioelectronic sensing platform. This novel system can sensitively detect the cannabinoid ligand anandamide (AEA) at concentrations as low as 1 fM, demonstrating high selectivity and real-time response. It also successfully identified the hCB1R agonist Δ9-tetrahydrocannabinol and observed that the hCB1R antagonist rimonabant diminished the sensor signal upon AEA binding, indicating the antagonism-based modulation of ligand interaction. Consequently, our bioelectronic sensing platform holds potential for ligand detection and analysis of agonism and antagonism.”

https://pubmed.ncbi.nlm.nih.gov/39173339/

https://www.sciencedirect.com/science/article/abs/pii/S0956566324006924?via%3Dihub

Potential Neuroprotective Effect of the Endocannabinoid System on Parkinson’s Disease

pubmed logo

“Parkinson’s disease (PD) is a neurodegenerative disorder characterized by alterations in motor capacity resulting from a decrease in the neurotransmitter dopamine due to the selective death of dopaminergic neurons of the nigrostriatal pathway. Unfortunately, conventional pharmacological treatments fail to halt disease progression; therefore, new therapeutic strategies are needed, and currently, some are being investigated.

The endocannabinoid system (ECS), highly expressed in the basal ganglia (BG) circuit, undergoes alterations in response to dopaminergic depletion, potentially contributing to motor symptoms and the etiopathogenesis of PD. Substantial evidence supports the neuroprotective role of the ECS through various mechanisms, including anti-inflammatory, antioxidative, and antiapoptotic effects. Therefore, the ECS emerges as a promising target for PD treatment.

This review provides a comprehensive summary of current clinical and preclinical evidence concerning ECS alterations in PD, along with potential pharmacological targets that may exert the protection of dopaminergic neurons.”

https://pubmed.ncbi.nlm.nih.gov/39104613/

“Considering current evidence, the ECS emerges as a promising therapeutic target for managing PD, primarily owing to its neuroprotective effects, prominently mediated through anti-inflammatory mechanisms. This is particularly significant since neuroinflammation stands out as a hallmark of PD, and extensive preclinical studies have consistently demonstrated that modulating this inflammatory process mitigates the progression of dopaminergic neuronal death.”

https://onlinelibrary.wiley.com/doi/10.1155/2024/5519396

Beneficial Consequences of One-Month Oral Treatment with Cannabis Oil on Cardiac Hypertrophy and the Mitochondrial Pool in Spontaneously Hypertensive Rats

pubmed logo

“Introduction: It has been demonstrated the dysregulation of the cardiac endocannabinoid system in cardiovascular diseases. Thus, the modulation of this system through the administration of phytocannabinoids present in medicinal cannabis oil (CO) emerges as a promising therapeutic approach. Furthermore, phytocannabinoids exhibit potent antioxidant properties, making them highly desirable in the treatment of cardiac pathologies, such as hypertension-induced cardiac hypertrophy (CH). 

Objective: To evaluate the effect of CO treatment on hypertrophy and mitochondrial status in spontaneously hypertensive rat (SHR) hearts. 

Methods: Three-month-old male SHR were randomly assigned to CO or olive oil (vehicle) oral treatment for 1 month. We evaluated cardiac mass and histology, mitochondrial dynamics, membrane potential, area and density, myocardial reactive oxygen species (ROS) production, superoxide dismutase (SOD), and citrate synthase (CS) activity and expression. Data are presented as mean ± SEM (n) and compared by t-test, or two-way ANOVA and Bonferroni post hoc test were used as appropriate. p < 0.05 was considered statistically significant. 

Results: CH was reduced by CO treatment, as indicated by the left ventricular weight/tibia length ratio, left ventricular mass index, myocyte cross-sectional area, and left ventricle collagen volume fraction. The ejection fraction was preserved in the CO-treated group despite the persistence of elevated systolic blood pressure and the reduction in CH. Mitochondrial membrane potential was improved and mitochondrial biogenesis, dynamics, area, and density were all increased by treatment. Moreover, the activity and expression of the CS were enhanced by treatment, whereas ROS production was decreased and the antioxidant activity of SOD increased by CO administration. 

Conclusion: Based on the mentioned results, we propose that 1-month oral treatment with CO is effective to reduce hypertrophy, improve the mitochondrial pool and increase the antioxidant capacity in SHR hearts.”

https://pubmed.ncbi.nlm.nih.gov/39137344/

https://www.liebertpub.com/doi/10.1089/can.2024.0066

Therapeutic Application of Modulators of Endogenous Cannabinoid System in Parkinson’s Disease

pubmed logo

“The endogenous cannabinoid system (ECS) of the brain plays an important role in the molecular pathogenesis of Parkinson’s disease (PD). It is involved in the formation of numerous clinical manifestations of the disease by regulating the level of endogenous cannabinoids and changing the activation of cannabinoid receptors (CBRs). Therefore, ECS modulation with new drugs specifically designed for this purpose may be a promising strategy in the treatment of PD. However, fine regulation of the ECS is quite a complex task due to the functional diversity of CBRs in the basal ganglia and other parts of the central nervous system. In this review, the effects of ECS modulators in various experimental models of PD in vivo and in vitro, as well as in patients with PD, are analyzed. Prospects for the development of new cannabinoid drugs for the treatment of motor and non-motor symptoms in PD are presented.”

https://pubmed.ncbi.nlm.nih.gov/39126088/

“The above indicates the undoubted therapeutic potential of the modulation of the ECS in PD . In recent decades, the ECS has attracted considerable interest as a potential therapeutic target for numerous disorders of the nervous system. Since PD is, clinically, a very polymorphic condition with a variety of motor and non-motor manifestations, it is a useful kind of “model” for assessing the multidimensional action of ECS modulators and is an adequate object for studying the cellular and molecular mechanisms of their action.

Cannabinoids and endocannabinoids hold promise as disease modifiers for the prevention or treatment of neurodegenerative diseases. Experimental and clinical experiences of using ECS modulators in PD and other neurodegenerative diseases create a basis for further intensive therapeutic studies of cannabis and its derivatives in chronic neurodegeneration.”

https://www.mdpi.com/1422-0067/25/15/8520

THC vapor inhalation attenuates hyperalgesia in rats using a chronic inflammatory pain model

pubmed logo

“Humans use cannabinoid drugs to alleviate pain.

As cannabis and cannabinoids are legalized in the U.S. for medicinal and recreational use, it has become critical to determine the potential utilities and harms of cannabinoid drugs in individuals living with chronic pain.

Here, we tested the effects of repeated THC vapor inhalation on thermal nociception and mechanical sensitivity, in adult male and female Wistar rats using a chronic inflammatory pain model (i.e., treated with Complete Freund’s Adjuvant [CFA]).

We report that repeated THC vapor inhalation rescues thermal hyperalgesia in males and females treated with CFA, and also reduces mechanical hypersensitivity in CFA males but not females. Many of the anti-hyperalgesic effects of chronic THC vapor were still observable 24 hours after cessation of the last THC exposure.

We also report plasma levels of THC and its major metabolites, some of which are cannabinoid type-1 receptor (CB1) agonists, after the first and tenth days of THC vapor inhalation. Finally, we report that systemic administration of the CB1 inverse agonist AM251 (1mg/kg; i.p.) blocks the anti-hyperalgesic effects of THC vapor in males and females.

These data provide a foundation for future work that will explore the cells and circuits underlying the anti-hyperalgesic effects of THC vapor inhalation in individuals with chronic inflammatory pain.

PERSPECTIVE: Cannabinoids are thought to have potential utility in the treatment of chronic pain, but few animal studies have tested the effects of chronic THC or cannabis in animal models of chronic pain. We tested the effects of repeated THC vapor inhalation on chronic pain-related outcomes in male and female animals.”

https://pubmed.ncbi.nlm.nih.gov/39121915/

https://www.jpain.org/article/S1526-5900(24)00599-6/abstract