Nutrition, endocannabinoids, and the use of cannabis: An overview for the nutrition clinician

pubmed logo

“The endocannabinoid system (ECs) is composed of multiple signaling compounds and receptors within the central and peripheral nervous system along with various organs, including the gut, liver, and skeletal muscle.

The ECs has been implicated in metabolism, gut motility, and eating behaviors. The ECs is altered in disease states such as obesity. Recent studies have clarified the role of the gut microbiome and nutrition on the ECs. Exogenous cannabinoid (CB) use, either organic or synthetic, stimulates the ECs through CB1 and CB2 receptors. However, the role of CBs is unclear in regard to nutrition optimization or to treat disease states.

This review briefly summarizes the effect of the ECs and exogenous CBs on metabolism and nutrition. With the increased legalization of cannabis, there is a corresponding increased use in the United States. Therefore, nutrition clinicians need to be aware of both the benefits and harm of cannabis use on overall nutrition status, as well as the gaps in knowledge for future research and guideline development.”

https://pubmed.ncbi.nlm.nih.gov/38555505/

https://aspenjournals.onlinelibrary.wiley.com/doi/10.1002/ncp.11148

Cannabinoids for the treatment of autoimmune and inflammatory skin diseases: A systematic review

pubmed logo

“In recent years, the medical use of cannabinoids has attracted growing attention worldwide. In particular, anti-inflammatory properties of cannabinoids led to their emergence as potential therapeutic options for autoimmune and inflammatory disorders.

Recent studies have also shown that cannabinoid receptors are widely expressed and have endogenous ligands in the skin, suggesting that the skin has its own endocannabinoid system. The aim of this review is to discuss the potential therapeutic effects of cannabinoids in autoimmune and inflammatory skin diseases.

Following an overview of cannabinoids and the endocannabinoid system, we describe the cellular and molecular mechanisms of cannabinoids in skin health and disease. We then review the clinical studies of cannabinoids in autoimmune and inflammatory skin diseases including systemic sclerosis (SSc), dermatomyositis (DM), psoriasis (Pso) and atopic dermatitis (AD). A primary literature search was conducted in July 2023, using PubMed and Web of Science. A total of 15 articles were included after excluding reviews, non-human studies and in vitro studies from 389 non-duplicated articles.

Available evidence suggests that cannabinoids may be beneficial for SSc, DM, Pso and AD. However, further studies, ideally randomized controlled trials, are needed to further evaluate the use of cannabinoids in autoimmune and inflammatory skin diseases.”

https://pubmed.ncbi.nlm.nih.gov/38532572/

“The available data support the safety and efficacy of cannabinoids in SSc, DM, Pso and AD, as well as highlight the need for further studies to confirm their therapeutic use. In conclusion, available evidence suggests that cannabinoids have the potential therapeutic benefit with good tolerability in SSc, DM, Pso and AD. “

https://onlinelibrary.wiley.com/doi/10.1111/exd.15064

Involvement of CB1 and CB2 receptors in neuroprotective effects of cannabinoids in experimental TDP-43 related frontotemporal dementia using male mice

pubmed logo

“Background: The elevation of endocannabinoid levels through inhibiting their degradation afforded neuroprotection in CaMKIIα-TDP-43 mice, a conditional transgenic model of frontotemporal dementia. However, which cannabinoid receptors are mediating these benefits is still pending to be elucidated.

Methods: We have investigated the involvement of the CB1 and the CB2 receptor using chronic treatments with selective ligands in CaMKIIα-TDP-43 mice, analysis of their cognitive deterioration with the Novel Object Recognition test, and immunostaining for neuronal and glial markers in two areas of interest in frontotemporal dementia.

Results: Our results confirmed the therapeutic value of activating either the CB1 or the CB2 receptor, with improvements in the animal performance in the Novel Object Recognition test, preservation of pyramidal neurons, in particular in the medial prefrontal cortex, and attenuation of glial reactivity, in particular in the hippocampus. In addition, the activation of both CB1 and CB2 receptors reduced the elevated levels of TDP-43 in the medial prefrontal cortex of CaMKIIα-TDP-43 mice, an effect exerted by mechanisms that are currently under investigation.

Conclusions: These data reinforce the notion that the activation of CB1 and CB2 receptors may represent a promising therapy against TDP-43-induced neuropathology in frontotemporal dementia. Future studies will have to confirm these benefits, in particular with one of the selective CB2 agonists used here, which has been thoroughly characterized for clinical development.”

https://pubmed.ncbi.nlm.nih.gov/38522237/

https://www.sciencedirect.com/science/article/pii/S0753332224003573?via%3Dihub

Observational Analysis of the Influence of Medical Marijuana Use on Quality of Life in Patients

pubmed logo

“Introduction: A significant gap exists in the understanding and utilization of medical marijuana and its effects on a patient’s quality of life. This is largely attributed to Cannabis’ sp. Schedule 1 classification, which has impeded the scientific investigation of its effects on the endocannabinoid system (ECS) and quality of life. Additionally, conflicting results from previous studies highlight the need for more research to provide guidance to both patients and clinicians regarding the therapeutic potential of medical marijuana.

Methods: Patients over 18 years of age who were members of the Pennsylvania Medical Marijuana Program (PAMMP) were recruited from regulated Pennsylvania medical marijuana dispensaries. Eligible patients were enrolled through informed consent, following a study design that received approval from the LECOM Institutional Review Board (IRB). Over 90 days, participants were remotely administered an electronic survey every 30 days to collect medical marijuana use patterns and assess changes in quality of life.

Results: Of the 103 participants who completed the study, significant improvements were observed in physical and social functioning, emotional well-being, and energy levels within the first 30 days. Participants reported significant decreases in emotional limitations, fatigue, and pain levels. Notably, participants who used inhaled or vaped products (defined as vape cartridges and concentrates) were younger and exhibited a significantly higher increase in emotional well-being scores compared to those who used flower products (defined as dry leaf only). Participants who consumed medical marijuana for opioid use demonstrated significantly higher THC consumption compared to those seeking treatment for anxiety, chronic pain, or inflammatory bowel disease (IBD). Improvements in the first 30 days also remained constant for the remainder of the study.

Discussion: This study contributed valuable insights into the effects of medical marijuana on quality of life and highlighted potential benefits associated with its use. Moreover, ongoing research aims to assess the observed sustained improvements beyond 90 days, investigating potential long-term trends. While further research is needed to explore the underlying mechanisms of action and long-term effects of medical marijuana, clinicians and patients can gain a better understanding of medical marijuana’s therapeutic potential, enabling more informed decisions regarding its use in clinical settings.”

https://pubmed.ncbi.nlm.nih.gov/38500669/

“This research looks at the effects of medical marijuana on a patient’s quality of life. The study involved 103 participants from Pennsylvania who were using medical marijuana for various health conditions. They answered four surveys over 90 days, reporting on their experiences with marijuana and their well-being.

The results showed that many participants experienced improvements in their physical and social functioning, energy levels, and emotional well-being within the first 30–60 days of using medical marijuana.

Interestingly, the study found that how often someone used medical marijuana could affect their overall health. Those who used it once a day tended to have better general health scores compared to those who used it more frequently. Alcohol use seemed to have an impact too. People who used both alcohol and medical marijuana had lower energy levels and emotional well-being, suggesting that the combination might not be ideal. The study also looked at how people consumed medical marijuana, whether by inhaling it or using it as a flower, and found differences in THC consumption and emotional well-being. However, the study had some limitations, like relying on self-reported data and having a small sample size. Still, it provides valuable insights into how medical marijuana can affect people’s lives and highlights the need for personalized approaches to its use.”

https://karger.com/mca/article/7/1/44/895874/Observational-Analysis-of-the-Influence-of-Medical

Exploring the Possible Role of Cannabinoids in Managing Post-Cardiac Surgery Complications: A Narrative Review of Preclinical Evidence and a Call for Future Research Directions

pubmed logo

“Open-heart surgery with cardiopulmonary bypass (CPB) often leads to complications including pain, systemic inflammation, and organ damage. Traditionally managed with opioids, these pain relief methods bring potential long-term risks, prompting the exploration of alternative treatments.

The legalization of cannabis in various regions has reignited interest in cannabinoids, such as CBD, known for their anti-inflammatory, analgesic, and neuroprotective properties. Historical and ongoing research acknowledges the endocannabinoid system’s crucial role in managing physiological processes, suggesting cannabinoids could offer therapeutic benefits in post-surgical recovery.

Specifically, CBD has shown promise in managing pain, moderating immune responses, and mitigating ischemia/reperfusion injury, underscoring its potential in postoperative care. However, the translation of these findings into clinical practice faces challenges, highlighting the need for extensive research to establish effective, safe cannabinoid-based therapies for patients undergoing open-heart surgery.

This narrative review advocates for a balanced approach, considering both the therapeutic potential of cannabinoids and the complexities of their integration into clinical settings.”

https://pubmed.ncbi.nlm.nih.gov/38498618/

https://journals.lww.com/cardiovascularpharm/abstract/9900/exploring_the_possible_role_of_cannabinoids_in.298.aspx

Therapeutic applicability of cannabidiol and other phytocannabinoids in epilepsy, multiple sclerosis and Parkinson’s disease and in comorbidity with psychiatric disorders

pubmed logo

“Studies have demonstrated the neuroprotective effect of cannabidiol (CBD) and other Cannabis sativa L. derivatives on diseases of the central nervous system caused by their direct or indirect interaction with endocannabinoid system-related receptors and other molecular targets, such as the 5-HT1A receptor, which is a potential pharmacological target of CBD. Interestingly, CBD binding with the 5-HT1A receptor may be suitable for the treatment of epilepsies, parkinsonian syndromes and amyotrophic lateral sclerosis, in which the 5-HT1A serotonergic receptor plays a key role. The aim of this review was to provide an overview of cannabinoid effects on neurological disorders, such as epilepsy, multiple sclerosis and Parkinson’s diseases, and discuss their possible mechanism of action, highlighting interactions with molecular targets and the potential neuroprotective effects of phytocannabinoids. CBD has been shown to have significant therapeutic effects on epilepsy and Parkinson’s disease, while nabiximols contribute to a reduction in spasticity and are a frequent option for the treatment of multiple sclerosis. Although there are multiple theories on the therapeutic potential of cannabinoids for neurological disorders, substantially greater progress in the search for strong scientific evidence of their pharmacological effectiveness is needed.”

https://pubmed.ncbi.nlm.nih.gov/38477419/

https://onlinelibrary.wiley.com/doi/10.1111/bcpt.13997

Cannabinoids induce cell death in leukaemic cells through Parthanatos and PARP-related metabolic disruptions

pubmed logo

“Background: Several studies have described a potential anti-tumour effect of cannabinoids (CNB). CNB receptor 2 (CB2) is mostly present in hematopoietic stem cells (HSC). The present study evaluates the anti-leukaemic effect of CNB.

Methods: Cell lines and primary cells from acute myeloid leukaemia (AML) patients were used and the effect of the CNB derivative WIN-55 was evaluated in vitro, ex vivo and in vivo.

Results: We demonstrate a potent antileukemic effect of WIN-55 which is abolished with CB antagonists. WIN-treated mice, xenografted with AML cells, had better survival as compared to vehicle or cytarabine. DNA damage-related genes were affected upon exposure to WIN. Co-incubation with the PARP inhibitor Olaparib prevented WIN-induced cell death, suggesting PARP-mediated apoptosis which was further confirmed with the translocation of AIF to the nucleus observed in WIN-treated cells. Nicotinamide prevented WIN-related apoptosis, indicating NAD+ depletion. Finally, WIN altered glycolytic enzymes levels as well as the activity of G6PDH. These effects are reversed through PARP1 inhibition.

Conclusions: WIN-55 exerts an antileukemic effect through Parthanatos, leading to translocation of AIF to the nucleus and depletion of NAD+, which are reversed through PARP1 inhibition. It also induces metabolic disruptions. These effects are not observed in normal HSC.”

https://pubmed.ncbi.nlm.nih.gov/38461169/

“Dronabinol has preferential antileukemic activity in acute lymphoblastic and myeloid leukemia with lymphoid differentiation patterns. Our study provides rigorous data to support clinical evaluation of THC as a low-toxic therapy option in a well defined subset of acute leukemia patients.”

https://pubmed.ncbi.nlm.nih.gov/26775260/


Classical cannabinoid receptors as target in cancer-induced bone pain: a systematic review, meta-analysis and bioinformatics validation

pubmed logo

“To test the hypothesis that genetic and pharmacological modulation of the classical cannabinoid type 1 (CB1) and 2 (CB2) receptors attenuate cancer-induced bone pain, we searched Medline, Web of Science and Scopus for relevant skeletal and non-skeletal cancer studies from inception to July 28, 2022. We identified 29 animal and 35 human studies. In mice, a meta-analysis of pooled studies showed that treatment of osteolysis-bearing males with the endocannabinoids AEA and 2-AG (mean difference [MD] – 24.83, 95% confidence interval [95%CI] – 34.89, – 14.76, p < 0.00001) or the synthetic cannabinoid (CB) agonists ACPA, WIN55,212-2, CP55,940 (CB1/2-non-selective) and AM1241 (CB2-selective) (MD – 28.73, 95%CI – 45.43, – 12.02, p = 0.0008) are associated with significant reduction in paw withdrawal frequency. Consistently, the synthetic agonists AM1241 and JWH015 (CB2-selective) increased paw withdrawal threshold (MD 0.89, 95%CI 0.79, 0.99, p < 0.00001), and ACEA (CB1-selective), AM1241 and JWH015 (CB2-selective) reduced spontaneous flinches (MD – 4.85, 95%CI – 6.74, – 2.96, p < 0. 00001) in osteolysis-bearing male mice. In rats, significant increase in paw withdrawal threshold is associated with the administration of ACEA and WIN55,212-2 (CB1/2-non-selective), JWH015 and AM1241 (CB2-selective) in osteolysis-bearing females (MD 8.18, 95%CI 6.14, 10.21, p < 0.00001), and treatment with AM1241 (CB2-selective) increased paw withdrawal thermal latency in males (mean difference [MD]: 3.94, 95%CI 2.13, 5.75, p < 0.0001), confirming the analgesic capabilities of CB1/2 ligands in rodents.

In human, treatment of cancer patients with medical cannabis (standardized MD – 0.19, 95%CI – 0.35, – 0.02, p = 0.03) and the plant-derived delta-9-THC (20 mg) (MD 3.29, CI 2.24, 4.33, p < 0.00001) or its synthetic derivative NIB (4 mg) (MD 2.55, 95%CI 1.58, 3.51, p < 0.00001) are associated with reduction in pain intensity.

Bioinformatics validation of KEGG, GO and MPO pathway, function and process enrichment analysis of mouse, rat and human data revealed that CB1 and CB2 receptors are enriched in a cocktail of nociceptive and sensory perception, inflammatory, immune-modulatory, and cancer pathways. Thus, we cautiously conclude that pharmacological modulators of CB1/2 receptors show promise in the treatment of cancer-induced bone pain, however further assessment of their effects on bone pain in genetically engineered animal models and cancer patients is warranted.”

https://pubmed.ncbi.nlm.nih.gov/38461339/

Cannabinoids in the treatment of glioblastoma

pubmed logo

“Glioblastoma (GBM) is the most prevalent primary malignant tumor of the nervous system. While the treatment of other neoplasms is increasingly more efficacious the median survival rate of GBM patients remains low and equals about 14 months. Due to this fact, there are intensive efforts to find drugs that would help combat GBM.

Nowadays cannabinoids are becoming more and more important in the field of cancer and not only because of their properties of antiemetic drugs during chemotherapy. These compounds may have a direct cytotoxic effect on cancer cells.

Studies indicate GBM has disturbances in the endocannabinoid system-changes in cannabinoid metabolism as well as in the cannabinoid receptor expression. The GBM cells show expression of cannabinoid receptors 1 and 2 (CB1R and CB2R), which mediate various actions of cannabinoids. Through these receptors, cannabinoids inhibit the proliferation and invasion of GBM cells, along with changing their morphology.

Cannabinoids also induce an intrinsic pathway of apoptosis in the tumor. Hence the use of cannabinoids in the treatment of GBM may be beneficial to the patients. So far, studies focusing on using cannabinoids in GBM therapy are mainly preclinical and involve cell lines and mice.

The results are promising and show cannabinoids inhibit GBM growth. Several clinical studies are also being carried out.

The preliminary results show good tolerance of cannabinoids and prolonged survival after administration of these drugs.

In this review, we describe the impact of cannabinoids on GBM and glioma cells in vitro and in animal studies. We also provide overview of clinical trials on using cannabinoids in the treatment of GBM.”

https://pubmed.ncbi.nlm.nih.gov/38457018/

https://link.springer.com/article/10.1007/s43440-024-00580-x

Targeting the endocannabinoid system for the management of low back pain

pubmed logo

“Low back pain (LBP) is a major unmet clinical need. The endocannabinoid system (ECS) has emerged as a promising therapeutic target for pain, including LBP. This review examines the evidence for the ECS as a therapeutic target for LBP. While preclinical studies demonstrate the potential of the ECS as a viable therapeutic target, clinical trials have presented conflicting findings. This review underscores the need for innovative LBP treatments and biomarkers and proposes the ECS as a promising avenue for their exploration. A deeper mechanistic understanding of the ECS in LBP could inform the development of new pain management strategies.”

https://pubmed.ncbi.nlm.nih.gov/38401317/

https://www.sciencedirect.com/science/article/pii/S1471489224000080?via%3Dihub