Constituents of Cannabis Sativa

“The Cannabis sativa plant has been used medicinally and recreationally for thousands of years, but recently only relatively some of its constituents have been identified.

There are more than 550 chemical compounds in cannabis, with more than 100 phytocannabinoids being identified, including Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD).

These phytocannabinoids work by binding to the cannabinoid receptors, as well as other receptor systems. Also within cannabis are the aromatic terpenes, more than 100 of which have been identified.

Cannabis and its constituents have been indicated as therapeutic compounds in numerous medical conditions, such as pain, anxiety, epilepsy, nausea and vomiting, and post-traumatic stress disorder.

This chapter provides an overview of some of the biological effects of a number of the cannabinoids and terpenes, as well as discussing their known mechanisms of action and evidence of potential therapeutic effects.”

https://pubmed.ncbi.nlm.nih.gov/33332000/

https://link.springer.com/chapter/10.1007%2F978-3-030-57369-0_1

Antiseizure effects of the cannabinoids in the amygdala-kindling model

“Objective: Focal impaired awareness seizures (FIASs) are the most common seizure type in adults and are often refractory to medication. Management of FIASs is clinically challenging, and new interventions are needed for better seizure control. The amygdala-kindling model is a preclinical model of FIASs with secondary generalization.

The present study assessed the efficacy of cannabidiol (CBD), ∆9-tetrahydrocannabinol (THC), and a combination of CBD and THC in a 15:1 ratio at suppressing focal and secondarily generalized seizures in the amygdala-kindled rat.

Results: CBD alone produced a partial suppression of both generalized seizures (median effective dose [ED50 ] = 283 mg/kg) and focal seizures (ED40 = 320 mg/kg) at doses that did not produce ataxia. THC alone also produced partial suppression of generalized (ED50 = 10 mg/kg) and focal (ED50 = 30 mg/kg) seizures, but doses of 10 mg/kg and above produced hypolocomotion, although not ataxia. The addition of a low dose of THC to CBD (15:1) left-shifted the CBD dose-response curve, producing much lower ED50 s for both generalized (ED50 = 26 + 1.73 mg/kg) and focal (ED50 = 40 + 2.66 mg/kg) seizures. No ataxia or hypolocomotion was seen at these doses of the CBD + THC combination.

Significance: CBD and THC both have antiseizure properties in the amygdala-kindling model, although THC produces suppression of the amygdala focus only at doses that produce hypolocomotion. The addition of small amounts of THC greatly improves the effectiveness of CBD. A combination of CBD and THC might be useful for the management of FIASs.”

https://pubmed.ncbi.nlm.nih.gov/34251027/

https://onlinelibrary.wiley.com/doi/10.1111/epi.16973

Use and caregiver-reported efficacy of medical cannabis in children and adolescents in Switzerland

SpringerLink“Evidence on the use and efficacy of medical cannabis for children is limited. We examined clinical and epidemiological characteristics of medical cannabis treatment and caregiver-reported effects in children and adolescents in Switzerland.

We collected clinical data from children and adolescents (< 18 years) who received Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), or a combination of the two between 2008 and 2019 in Switzerland. Out of 205 contacted families, 90 agreed to participate. The median age at the first prescription was 11.5 years (interquartile range (IQR) 6-16), and 32 patients were female (36%). Fifty-one (57%) patients received CBD only and 39 (43%) THC. Patients were more likely to receive THC therapy if one of the following symptoms or signs were present: spasticity, pain, lack of weight gain, vomiting, or nausea, whereas seizures were the dominant indication for CBD therapy.

Improvements were reported in 59 (66%) study participants.

The largest treatment effects were reported for pain, spasticity, and frequency of seizures in participants treated with THC, and for those treated with pure CBD, the frequency of seizures. However, 43% of caregivers reported treatment interruptions, mainly because of lack of improvement (56%), side effects (46%), the need for a gastric tube (44%), and cost considerations (23%).

Conclusions: The effects of medical cannabis in children and adolescents with chronic conditions are unknown except for rare seizure disorders, but the caregiver-reported data analysed here may justify trials of medical cannabis with standardized concentrations of THC or CBD to assess its efficacy in the young.

What is Known: • The use of medical cannabis (THC and CBD) to treat a variety of diseases among children and adolescents is increasing. • In contrast to adults, there is no evidence to support the use of medical cannabis to treat chronic pain and spasticity in children, but substantial evidence to support the use of CBD in children with rare seizure disorders.

What is New: • This study provides important insights into prescription practices, dosages, and treatment outcomes in children and adolescents using medical cannabis data from a real-life setting.

• The effects of medical cannabis in children and adolescents with chronic conditions shown in our study support trials of medical cannabis for chronic conditions.”

https://pubmed.ncbi.nlm.nih.gov/34309706/

“For two thirds of participants treated with standardized THC or CBD preparations, the caregiver reported an improvement in their condition and well-being. Medical cannabis could be a promising and useful therapy for children and adolescents with neurological conditions.”

https://link.springer.com/article/10.1007%2Fs00431-021-04202-z

Cannabidiol in Neurological and Neoplastic Diseases: Latest Developments on the Molecular Mechanism of Action

ijms-logo“As the major nonpsychotropic constituent of Cannabis sativa, cannabidiol (CBD) is regarded as one of the most promising therapeutic agents due to its proven effectiveness in clinical trials for many human diseases. Due to the urgent need for more efficient pharmacological treatments for several chronic diseases, in this review, we discuss the potential beneficial effects of CBD for Alzheimer’s disease, epilepsy, multiple sclerosis, and neurological cancers. Due to its wide range of pharmacological activities (e.g., antioxidant, anti-inflammatory, and neuroprotective properties), CBD is considered a multimodal drug for the treatment of a range of neurodegenerative disorders, and various cancer types, including neoplasms of the neural system. The different mechanisms of action of CBD are here disclosed, together with recent progress in the use of this cannabis-derived constituent as a new therapeutic approach.”

https://pubmed.ncbi.nlm.nih.gov/33919010/

https://www.mdpi.com/1422-0067/22/9/4294

Molecular Targets of Cannabidiol in Experimental Models of Neurological Disease

molecules-logo“Cannabidiol (CBD) is a non-psychoactive phytocannabinoid known for its beneficial effects including antioxidant and anti-inflammatory properties. Moreover, CBD is a compound with antidepressant, anxiolytic, anticonvulsant and antipsychotic effects. Thanks to all these properties, the interest of the scientific community for it has grown.

Indeed, CBD is a great candidate for the management of neurological diseases. The purpose of our review is to summarize the in vitro and in vivo studies published in the last 15 years that describe the biochemical and molecular mechanisms underlying the effects of CBD and its therapeutic application in neurological diseases.

CBD exerts its neuroprotective effects through three G protein coupled-receptors (adenosine receptor subtype 2A, serotonin receptor subtype 1A and G protein-coupled receptor 55), one ligand-gated ion channel (transient receptor potential vanilloid channel-1) and one nuclear factor (peroxisome proliferator-activated receptor γ). Moreover, the therapeutical properties of CBD are also due to GABAergic modulation.

In conclusion, CBD, through multi-target mechanisms, represents a valid therapeutic tool for the management of epilepsy, Alzheimer’s disease, multiple sclerosis and Parkinson’s disease.”

https://pubmed.ncbi.nlm.nih.gov/33171772/

https://www.mdpi.com/1420-3049/25/21/5186

Effect of Cannabinoids on Electroencephalography of a Child with Lennox-Gastaut Syndrome

“Cannabinoids have been found to be effective in controlling seizures and the highly purified form of cannabinoid derived for Cannabis sativa . Cannabidiol (CBD) is now approved for Lennox-Gastaut syndrome (LGS) and Dravet syndrome. CBD was used in a 9-year-old boy with LGS (unknown etiology) with very good results. The electroencephalography (EEG) response was very dramatic with near normalization of EEG background and complete control of seizures. The effect of CBD on EEG with such an improvement has not been described previously. Also, this adds to evidence that early intervention in LGS with CBD might be more helpful and improve outcomes.”

https://pubmed.ncbi.nlm.nih.gov/33144805/

https://www.thieme-connect.de/products/ejournals/abstract/10.1055/s-0040-1714329

Cannabidiol interactions with voltage-gated sodium channels

eLife logo “Voltage-gated sodium channels are targets for a range of pharmaceutical drugs developed for treatment of neurological diseases.

Cannabidiol (CBD), the non-psychoactive compound isolated from cannabis plants, was recently approved for treatment of two types of epilepsy associated with sodium channel mutations.

This study used high resolution X-ray crystallography to demonstrate the detailed nature of the interactions between CBD and the NavMs voltage-gated sodium channel, and electrophysiology to show the functional effects of binding CBD to these channels.

CBD binds at a novel site at the interface of the fenestrations and the central hydrophobic cavity of the channel. Binding at this site blocks the transmembrane-spanning sodium ion translocation pathway, providing a molecular mechanism for channel inhibition. Modelling studies suggest why the closely-related psychoactive compound tetrahydrocannabinol may not have the same effects on these channels. Finally, comparisons are made with the TRPV2 channel, also recently proposed as a target site for CBD.

In summary, this study provides novel insight into a possible mechanism for CBD interactions with sodium channels.”

https://pubmed.ncbi.nlm.nih.gov/33089780/

https://elifesciences.org/articles/58593

Biochemical Aspects and Therapeutic Mechanisms of Cannabidiol in Epilepsy

Neuroscience & Biobehavioral Reviews “Epilepsy is a chronic neurological disease characterized by recurrent epileptic seizures. Studies have shown the complexity of epileptogenesis and ictogenesis, in which immunological processes and epigenetic and structural changes in neuronal tissues have been identified as triggering epilepsy.

Cannabidiol (CBD) is a major active component of the Cannabis plant and the source of CBD-enriched products for the treatment of epilepsy and associated diseases.

In this review, we provide an up-to-date discussion on cellular and molecular mechanisms triggered during epilepsy crises, and the phytochemical characteristics of CBD that make it an attractive candidate for controlling rare syndromes, with excellent therapeutic properties. We also discuss possible CBD anticonvulsant mechanisms and molecular targets in neurodegenerative disorders and epilepsy.

Based on these arguments, we conclude that CBD presents a biotecnological potential in the anticonvulsant process, including decreasing dependence on health care in hospitals, and could make the patient’s life more stable, with regard to neurological conditions.”

https://pubmed.ncbi.nlm.nih.gov/33031814/

“Therapeutic properties of cannabidiol in the treatment of epilepsy”

https://www.sciencedirect.com/science/article/abs/pii/S0149763420305832?via%3Dihub

Practical use of pharmaceutically purified oral cannabidiol in Dravet syndrome and Lennox-Gastaut syndrome

Publication Cover “Pharmaceutically purified oral cannabidiol (CBD) has been recently approved by the US Food and Drug Administration and European Medicines Agency as treatment of seizures associated with Dravet syndrome (DS) and Lennox-Gastaut syndrome (LGS), which are severe and difficult-to-treat developmental and epileptic encephalopathies with onset in early childhood.

Areas covered: This review will critically review the pharmacokinetic properties of CBD, the interactions with antiseizure and non-antiseizure medications, and the main tolerability and safety issues to provide guidance for its use in everyday practice.

Expert opinion: CBD is metabolized in the liver and can influence the activity of enzymes involved in drug metabolism. The best characterized drug-drug interaction is between CBD and clobazam. The most common adverse events include somnolence, gastrointestinal discomfort and increase in serum transaminases.

High-grade purified CBD oral solution represents an effective therapeutic option in patients with DS and LGS.

The findings cannot be extrapolated to other cannabis-based products, synthetic cannabinoids for medicinal use and non-medicinal cannabis and CBD derivatives.”

https://pubmed.ncbi.nlm.nih.gov/33026899/

“Pharmaceutically purified oral cannabidiol (CBD) is approved for treatment of seizures associated with Dravet syndrome and Lennox-Gastaut syndrome.”

https://www.tandfonline.com/doi/abs/10.1080/14737175.2021.1834383?journalCode=iern20

Development of cannabidiol as a treatment for severe childhood epilepsies

“In recent years there has been a growing appreciation by regulatory authorities that cannabis-based medicines can play a useful role in disease therapy.

Although often conflagrated by proponents of recreational use, the legislative rescheduling of cannabis-derived compounds, such as cannabidiol (CBD), has been associated with the steady increase in the pursuit of use of medicinal cannabis.

One key driver in this interest has been the scientific demonstration of efficacy and safety of CBD in randomised, placebo-controlled clinical trials in children and young adults with difficult-to-treat epilepsies, which has encouraged increasing numbers of human trials of CBD for other indications and in other populations.

The introduction of CBD as the medicine Epidiolex in the US (in 2018) and as Epidyolex in the EU (in 2019) as the first cannabis-derived therapeutic for the treatment for seizures was underpinned by preclinical research performed at the University of Reading.

This work was awarded the British Pharmacological Society Sir James Black Award for Contributions to Drug Discovery 2019 and is discussed in the following review article.”

https://pubmed.ncbi.nlm.nih.gov/32986848/

https://bpspubs.onlinelibrary.wiley.com/doi/10.1111/bph.15274