The use of medical grade cannabis in Italy for drug-resistant epilepsy: a case series.

 “In Italy, medical grade cannabis (MGC) can be prescribed for different medical conditions, including drug-resistant epilepsy (DRE), once standard and approved therapies have failed, or caused non-tolerable side effects.

Here, we present a retrospective case series report of five patients with DRE who started therapy with MGC. Authorized ISO 9001:2008 pharmacies prepared MGC according to Italian laws. Olive oil extracts (OOEs) were prepared following standard extraction protocols, and cannabinoids were measured on each OOE to check for successful extraction.

After treatment with MGC, all patients reported a reduction in seizure frequency and severity, and some reported improved mood, sleep quality, and general well-being without relevant side effects.

Despite the small sample size and open-label nature of the data, we show that MGC may be successfully used to treat DRE. This is especially true when considering that no valid therapeutic option exists for these patients and that MGC was extremely well tolerated.”

https://www.ncbi.nlm.nih.gov/pubmed/31776867

https://link.springer.com/article/10.1007%2Fs10072-019-04162-1

Cannabinoids for drug-resistant seizures in a critically ill patient-Case report and literature review.

Publication cover image“Drug-resistant seizures are life-threatening and contribute to sustained hospitalization.

We present the case of a critically ill 28-year-old male with Lennox-Gastaut syndrome who had approximately 30 seizures/day in the intensive care unit.

CASE DESCRIPTION:

Patient required mechanical ventilation and pharmacologically induced thiopentone coma.

He was commenced on cannabidiol and subsequently extubated.

He remained seizure-free thereafter on a combination of cannabidiol and anti-epileptic medication that predated his critical illness.

WHAT IS NEW AND CONCLUSION:

Our case report provides a unique perspective on the role of cannabidiol in achieving remission from drug-resistant seizures in critically ill patients.”

https://www.ncbi.nlm.nih.gov/pubmed/31770462

https://onlinelibrary.wiley.com/doi/abs/10.1111/jcpt.13082

Reduced cannabinoid 2 receptor activity increases susceptibility to induced seizures in mice.

Publication cover image“The endocannabinoid system (ECS) is comprised of cannabinoid receptors 1 and 2 (CB1R and CB2R), endogenous ligands, and regulatory enzymes, and serves to regulate several important physiological functions throughout the brain and body.

Recent evidence suggests that the ECS may be a promising target for the treatment of epilepsy, including epilepsy subtypes that arise from mutations in the voltage-gated sodium channel SCN1A.

The objective of this study was to explore the effects of modulating CB2R activity on seizure susceptibility.

Our results demonstrate that reduced CB2R activity is associated with increased seizure susceptibility. CB2Rs might therefore provide a therapeutic target for the treatment of some forms of epilepsy.”

https://www.ncbi.nlm.nih.gov/pubmed/31758544

https://onlinelibrary.wiley.com/doi/abs/10.1111/epi.16388

Cannabis Influences the Putative Cytokines-Related Pathway of Epilepsy among Egyptian Epileptic Patients.

brainsci-logo“The study aims to investigate: (1) the prevalence of cannabis among epileptic patients seen at Mansoura University Hospital, (2) serum levels and gene expression of cytokines in epilepsy patients and the controls. and (3) the possibility that cannabis use affects the cytokine levels in epilepsy patients, triggering its future use in treatment.

We recruited 440 epilepsy patients and 200 controls matched for age, gender, and ethnicity. Of the epileptic patients, 37.5% demonstrated lifetime cannabis use with a mean duration of 15 ± 73 years. Serum levels of interleukin IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, and tumor necrosis factor-α (TNF-α), were analyzed and gene expression analysis was conducted only for those cytokines that were different between groups in the serum analysis.

The “Epilepsy-only” patients had significantly higher serum and mRNA levels of IL-1α, β, IL-2,6,8, and TNF-α compared to the controls and the “Cannabis+Epilepsy” group (p = 0.0001). IL-10 showed significantly lower levels in the “Epilepsy-only” patients compared to the controls and “Cannabis+Epilepsy” (p = 0.0001). Cannabis use is prevalent among epilepsy patients.

Epilepsy is characterized by a pro-inflammatory state supported by high serum and gene expression levels.

Cannabis users demonstrated significantly lower levels of inflammatory cytokines compared to epilepsy non-cannabis users which might contribute to its use in the treatment of resistant epilepsy.”

https://www.ncbi.nlm.nih.gov/pubmed/31757102

https://www.mdpi.com/2076-3425/9/12/332

Efficacy and adverse event profile of cannabidiol and medicinal cannabis for treatment-resistant epilepsy: Systematic review and meta-analysis.

“This paper aimed to systematically examine the efficacy and adverse event (AE) profile of cannabidiol and medicinal cannabis by analyzing qualitative and meta-analytic data.

According to the results, a statistically meaningful effect of cannabidiol compared with placebo was observed (p < 0.00001). When comparing treatment with cannabidiol or medicinal cannabis, significance was not found for the AE profile (p = 0.74). As AEs for cannabidiol were more common under short-term than under long-term treatment (p < 0.00001), this approach was favorable in the long term.

Furthermore, cannabidiol is more effective than placebo, regardless of the etiology of epileptic syndromes and dosage.

Overall, the AE profile did not differ across treatments with cannabidiol or medicinal cannabis, though it did differ favorably for long-term than for short-term treatment.”

https://www.ncbi.nlm.nih.gov/pubmed/31731110

“CBD treatments were effective compared with placebo, regardless of the dose administered. The safety analysis is related to tolerable SEs found in studies with both CBD and medicinal CNB. There was a greater tendency for adverse events in short-term treatment compared with long-term treatment.”

https://www.epilepsybehavior.com/article/S1525-5050(19)30862-5/fulltext

NICE recommends cannabis based drugs for epilepsy and multiple sclerosis

Image result for the bmj journal“In final appraisal documents the UK National Institute for Health and Care Excellence has recommended the use of cannabidiol with clobazam for treating seizures associated with two rare and severe forms of epilepsy: Lennox-Gastaut syndrome and Dravet syndrome.

The decision comes after NICE initially rejected the use of cannabidiol in draft appraisal documents released in August because of concerns over a lack of data on the drug’s long term effectiveness.

However, in its latest documents NICE has recommended the drug for people aged 2 or over, reporting that clinical trials had shown that, in comparison with usual care, cannabidiol reduced the number of drop and non-drop seizures and the number of convulsive and non-convulsive seizures.

The final appraisal documents are out for consultation until 27 November, and final approval is expected on 18 December.

The documents were released alongside NICE’s final guideline on cannabis based medicinal products. In this, NICE also recommends the use of nabiximols for patients with multiple sclerosis.”

https://www.ncbi.nlm.nih.gov/pubmed/31712197

https://www.bmj.com/content/367/bmj.l6453

A new mechanism for Cannabidiol in regulating the one-carbon cycle and methionine levels in Dictyostelium and in mammalian epilepsy models.

Publication cover image“EpidiolexTM , a form of highly purified cannabidiol (CBD) derived from Cannabis plants has demonstrated seizure control activity in patients with Dravet syndrome, without a fully-elucidated mechanism of action. We have employed an unbiased approach to investigate this mechanism at a cellular level.

We use a tractable biomedical model organism, Dictyostelium, to identify protein controlling the effect of CBD and characterize this mechanism. We then translate these results to a Dravet Syndrome mouse model and an acute in vitro seizure model.

Key Results CBD activity is partially dependent upon the mitochondrial glycine cleavage system component, GcvH1 in Dictyostelium, orthologous to the human GCSH protein, which is functionally linked to folate one-carbon metabolism (FOCM). Analysis of FOCM components identified a mechanism for CBD in directly inhibiting methionine synthesis.

Analysis of brain tissue from a Dravet syndrome mouse model also showed drastically altered levels of one-carbon components including methionine, and an in vitro rat seizure model showed an elevated level of methionine that is attenuated following CBD treatment. Conclusions and Implications

Our results suggest a novel mechanism for CBD in the regulating methionine levels, and identify altered one-carbon metabolism in Dravet syndrome and seizure activity.”

https://www.ncbi.nlm.nih.gov/pubmed/31693171

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.14892

Pharmacokinetics of Phytocannabinoid Acids and Anticonvulsant Effect of Cannabidiolic Acid in a Mouse Model of Dravet Syndrome.

 Go to Volume 0, Issue 0“Cannabis sativa produces a complex mixture of many bioactive molecules including terpenophenolic compounds known as phytocannabinoids. Phytocannabinoids come in neutral forms (e.g., Δ9-tetrahydrocannabinol, THC; cannabidiol, CBD; etc.) or as acid precursors, which are dominant in the plant (e.g., Δ9-tetrahydrocannabinolic acid, THCA; cannabidiolic acid, CBDA; etc.).

There is increasing interest in unlocking the therapeutic applications of the phytocannabinoid acids; however, the present understanding of the basic pharmacology of phytocannabinoid acids is limited. Herein the brain and plasma pharmacokinetic profiles of CBDA, THCA, cannabichromenic acid (CBCA), cannabidivarinic acid (CBDVA), cannabigerolic acid (CBGA), and cannabigerovarinic acid (CBGVA) were examined following intraperitoneal administration in mice.

Next it was examined whether CBDA was anticonvulsant in a mouse model of Dravet syndrome (Scn1aRX/+ mice). All the phytocannabinoid acids investigated were rapidly absorbed with plasma tmax values of between 15 and 45 min and had relatively short half-lives (<4 h). The brain-plasma ratios for the acids were very low at ≤0.04. However, when CBDA was administered in an alternate Tween 80-based vehicle, it exhibited a brain-plasma ratio of 1.9. The anticonvulsant potential of CBDA was examined using this vehicle, and it was found that CBDA significantly increased the temperature threshold at which the Scn1aRX/+ mice had a generalized tonic-clonic seizure.”

https://www.ncbi.nlm.nih.gov/pubmed/31686510

https://pubs.acs.org/doi/abs/10.1021/acs.jnatprod.9b00600

Abstract Image

Structure of an allosteric modulator bound to the CB1 cannabinoid receptor.

Image result for nature chemical biology“The CB1 receptor mediates the central nervous system response to cannabinoids, and is a drug target for pain, anxiety and seizures.

CB1 also responds to allosteric modulators, which influence cannabinoid binding and efficacy.

To understand the mechanism of these compounds, we solved the crystal structure of CB1 with the negative allosteric modulator (NAM) ORG27569 and the agonist CP55940.

The structure reveals that the NAM binds to an extrahelical site within the inner leaflet of the membrane, which overlaps with a conserved site of cholesterol interaction in many G protein-coupled receptors (GPCRs).

The ternary structure with ORG27569 and CP55940 captures an intermediate state of the receptor, in which aromatic residues at the base of the agonist-binding pocket adopt an inactive conformation despite the large contraction of the orthosteric pocket.

The structure illustrates a potential strategy for drug modulation of CB1 and other class A GPCRs.”

https://www.ncbi.nlm.nih.gov/pubmed/31659318

https://www.nature.com/articles/s41589-019-0387-2

Cannabinoid Receptor Interacting Protein 1a (CRIP1a): Function and Structure.

molecules-logo“Cannabinoid receptor interacting protein 1a (CRIP1a) is an important CB1 cannabinoid receptor-associated protein, first identified from a yeast two-hybrid screen to modulate CB1-mediated N-type Ca2+ currents. In this paper we review studies of CRIP1a function and structure based upon in vitro experiments and computational chemistry, which elucidate the specific mechanisms for the interaction of CRIP1a with CB1 receptors. N18TG2 neuronal cells overexpressing or silencing CRIP1a highlighted the ability of CRIP1 to regulate cyclic adenosine 3′,5’monophosphate (cAMP) production and extracellular signal-regulated kinase (ERK1/2) phosphorylation. These studies indicated that CRIP1a attenuates the G protein signaling cascade through modulating which Gi/o subtypes interact with the CB1 receptor. CRIP1a also attenuates CB1 receptor internalization via β-arrestin, suggesting that CRIP1a competes for β-arrestin binding to the CB1 receptor. Predictions of CRIP1a secondary structure suggest that residues 34-110 are minimally necessary for association with key amino acids within the distal C-terminus of the CB1 receptor, as well as the mGlu8a metabotropic glutamate receptor. These interactions are disrupted through phosphorylation of serines and threonines in these regions. Through investigations of the function and structure of CRIP1a, new pharmacotherapies based upon the CRIP-CB1 receptor interaction can be designed to treat diseases such as epilepsy, motor dysfunctions and schizophrenia.”

https://www.ncbi.nlm.nih.gov/pubmed/31614728

https://www.mdpi.com/1420-3049/24/20/3672