Higher cannabidiol plasma levels are associated with better seizure response following treatment with a pharmaceutical grade cannabidiol.

“The objective of this study was to determine the relationship between cannabidiol (CBD) dose, CBD plasma level, and seizure control in a large open-label single-center study.

METHODS:

All participants with treatment-refractory epilepsy participating in our expanded access program (EAP) were approached for participation. Highly purified grade CBD (Epidiolex®) dosing was weight-based and could be increased every 2 weeks by 5 mg/kg/day up to a maximum dosage of 50 mg/kg/day depending on tolerance and seizure control. Seizure counts were obtained at each visit with frequency calculated per 2-week periods. Cross-sectional plasma peak levels of CBD were obtained ~4 h after dosing in consecutively presenting patients.

RESULTS:

We evaluated 56 adults and 44 children (100 total; 54 female) at two time points – one before initiating CBD and one at the time of CBD plasma level testing. There was a positive linear correlation between CBD dosage (range from 5 to 50 mg/kg/day) and level (range from 7.1-1200 ng/mL) in all participants (r = 0.640; p < 0.001). The quantile regression model supported the notion of increased CBD levels being associated with improvement in seizure frequency after adjusting for age – specifically, a 100 ng/mL increase in CBD level was associated with approximately two counts reduction in seizure frequency per time period (1.87 96% confidence interval [CI] 0.34-3.39; p = 0.018). In participants with the same CBD level, differences in seizure improvement did not depend on age (p = 0.318).

CONCLUSIONS:

In this open-label study, we found evidence of a linear correlation between CBD dosage and plasma levels, and that higher dose/levels are associated with a higher response rate for seizure improvement. Children and adults responded to CBD similarly. However, seizure control response rates suggest children may respond to lower dosages/plasma levels than adults. Findings reported in this study are specific to Epidiolex® and should not be extrapolated to other CBD products.”

https://www.ncbi.nlm.nih.gov/pubmed/31048098

https://www.epilepsybehavior.com/article/S1525-5050(19)30051-4/fulltext

Long-term safety and efficacy of cannabidiol in children and adults with treatment resistant Lennox-Gastaut syndrome or Dravet syndrome: Expanded access program results.

Epilepsy Research

“Since 2014, patients with severe treatment-resistant epilepsies (TREs) have been receiving add-on cannabidiol (CBD) in an ongoing, expanded access program (EAP), which closely reflects clinical practice.

We conducted an interim analysis of long-term efficacy and tolerability in patients with Lennox-Gastaut syndrome (LGS) or Dravet syndrome (DS) who received CBD treatment through December 2016.

CONCLUSIONS:

Results from this interim analysis support add-on CBD as an effective long-term treatment option in LGS or DS.”

https://www.ncbi.nlm.nih.gov/pubmed/31022635

https://www.sciencedirect.com/science/article/pii/S0920121118305837?via%3Dihub

Use of Cannabidiol in the Treatment of Epilepsy: Efficacy and Security in Clinical Trials.

molecules-logo

“Cannabidiol (CBD) is one of the cannabinoids with non-psychotropic action, extracted from Cannabis sativa. CBD is a terpenophenol and it has received a great scientific interest thanks to its medical applications. This compound showed efficacy as anti-seizure, antipsychotic, neuroprotective, antidepressant and anxiolytic. The neuroprotective activity appears linked to its excellent anti-inflammatory and antioxidant properties. The purpose of this paper is to evaluate the use of CBD, in addition to common anti-epileptic drugs, in the severe treatment-resistant epilepsy through an overview of recent literature and clinical trials aimed to study the effects of the CBD treatment in different forms of epilepsy. The results of scientific studies obtained so far the use of CBD in clinical applications could represent hope for patients who are resistant to all conventional anti-epileptic drugs.”

https://www.ncbi.nlm.nih.gov/pubmed/31013866

https://www.mdpi.com/1420-3049/24/8/1459

Quality of life in adults enrolled in an open-label study of cannabidiol (CBD) for treatment-resistant epilepsy.

“Treatment-resistant epilepsy (TRE) is associated with low quality of life (QOL). Cannabidiol (CBD) may improve QOL, but it is unclear if such improvements are independent of improvements in seizure control. Our aim was to compare QOL at baseline and after 1 year of treatment with CBD. We hypothesized that QOL would improve independent of changes in seizure frequency (SF) or severity, mood, or adverse events. We assessed QOL using Quality of Life in Epilepsy-89 (QOLIE-89) in an open-label study of purified CBD (Epidiolex®) for the treatment of TRE. All participants received CBD, starting at 5 mg/kg/day and titrated to 50 mg/kg/day in increments of 5 mg/kg/day. We collected QOLIE-89 in adult participants at enrollment and after 1 year of treatment, or at study exit if earlier. We analyzed if the change in QOLIE-89 total score could be explained by the change in SF, seizure severity (Chalfont Seizure Severity Scale, CSSS), mood (Profile of Moods States, POMS), or adverse events (Adverse Event Profile, AEP). Associations among the variables were assessed using bivariate tests and multiple regression. Fifty-three participants completed enrollment and follow-up testing, seven at study termination. Mean QOLIE-89 total score improved from enrollment (49.4 ± 19) to follow-up (57 ± 21.3; p = .004). We also saw improvements in SF, POMS, AEP, and CSSS (all p ≤ .01). Multivariable regression results showed QOLIE-89 at follow-up associated with improvements in POMS at follow-up (p = .020), but not with AEP, CSSS, or SF (p ≥ .135). Improvement in QOL after treatment with CBD is associated with better mood but not with changes in SF, seizure severity, or AEP. Cannabidiol may have beneficial effects on QOL and mood that are independent of treatment response.”

https://www.ncbi.nlm.nih.gov/pubmed/31003195

https://www.epilepsybehavior.com/article/S1525-5050(19)30116-7/fulltext

Cost-effectiveness of cannabinoids for pediatric drug-resistant epilepsy: protocol for a systematic review of economic evaluations.

Image result for bmc systematic reviews

“Drug-resistant epilepsy negatively impacts the quality of life and is associated with increased morbidity and mortality and high costs to the healthcare system. Cannabis-based treatments may be effective in reducing seizures in this population, but whether they are cost-effective is unclear. In this systematic review, we will search for cost-effectiveness analyses involving the treatment of pediatric drug-resistant epilepsy with cannabis-based products to inform decision-making by public healthcare payers about reimbursement of such products. We will also search for cost-effectiveness analyses of other pharmacologic treatments for pediatric drug-resistant epilepsy, as well as estimates of healthcare resource use, costs, and utilities, for use in a subsequent cost-utility analysis to address this decision problem.

METHODS:

We will search the published and gray literature for economic evaluations of cannabis-based products and other pharmacologic treatments for pediatric drug-resistant epilepsy, as well as resource utilization and utility studies. Two independent reviewers will screen the title and abstract of each identified record and the full-text version of any study deemed potentially relevant. Study and population characteristics, the incremental cost-effectiveness ratio (ICER), as well as total costs and benefits, will be extracted, and quality will be assessed by use of the Drummond and CHEERS checklists; context-specific issues will also be considered. From model-based cost-utility and cost-effectiveness analyses, we will extract and summarize the model structure, including health states, time horizon, and cycle length. From resource utilization studies, we will extract data about the frequency of resource use (e.g., neurology visits, emergency department visits, admissions to hospital). From utility studies, we will extract the utility for each health state, the source of the preferences (e.g., child, parent, patient, general public), and the method of elicitation.

DISCUSSION:

Drug-resistant epilepsy in children is associated with important costs to the healthcare system, and decision-makers require high-quality evidence on which to base reimbursement decisions. The results of this review will be useful to both decision-makers considering the decision problem of whether to reimburse cannabis-based products through public formularies and to analysts conducting studies in this area.”

https://www.ncbi.nlm.nih.gov/pubmed/30917869

https://systematicreviewsjournal.biomedcentral.com/articles/10.1186/s13643-019-0990-z

Don’t Fear the Reefer-Evidence Mounts for Plant-Based Cannabidiol as Treatment for Epilepsy.

SAGE Journals

“Cannabidiol has been used for treatment-resistant seizures in patients with severe early-onset epilepsy. We investigated the efficacy and safety of cannabidiol added to a regimen of conventional antiepileptic medication to treat drop seizures in patients with the Lennox-Gastaut syndrome, a severe developmental epileptic encephalopathy.

METHODS:

In this double-blind, placebo-controlled trial conducted at 30 clinical centers, we randomly assigned patients with the Lennox-Gastaut syndrome (age range, 2-55 years) who had had 2 or more drop seizures per week during a 28-day baseline period to receive cannabidiol oral solution at a dose of 20 mg/kg of body weight (20-mg cannabidiol group) or 10 mg/kg (10-mg cannabidiolgroup) or matching placebo, administered in 2 equally divided doses daily for 14 weeks. The primary outcome was the percentage change from baseline in the frequency of drop seizures (average per 28 days) during the treatment period.

RESULTS:

A total of 225 patients were enrolled; 76 patients were assigned to the 20-mg cannabidiol group, 73 to the 10-mg cannabidiol group, and 76 to the placebo group. During the 28-day baseline period, the median number of drop seizures was 85 in all trial groups combined. The median percentage reduction from baseline in drop seizure frequency during the treatment period was 41.9% in the 20-mg cannabidiol group, 37.2% in the 10-mg cannabidiol group, and 17.2% in the placebo group ( P = .005 for the 20-mg cannabidiol group vs placebo group, and P = .002 for the 10-mg cannabidiol group vs placebo group). The most common adverse events among the patients in the cannabidiol groups were somnolence, decreased appetite, and diarrhea; these events occurred more frequently in the higher dose group. Six patients in the 20-mg cannabidiol group and 1 patient in the 10-mg cannabidiol group discontinued the trial medication because of adverse events and were withdrawn from the trial. Fourteen patients who received cannabidiol (9%) had elevated liver aminotransferase concentrations.

CONCLUSIONS:

Among children and adults with the Lennox-Gastaut syndrome, the addition of cannabidiol at a dose of 10 or 20 mg/kg/d to a conventional antiepileptic regimen resulted in greater reductions in the frequency of drop seizures than placebo. Adverse events with cannabidiol included elevated liver aminotransferase concentrations. (Funded by GW Pharmaceuticals; GWPCARE3 ClinicalTrials.gov number, NCT02224560.) Long-Term Safety and Treatment Effects of Cannabidiol in Children and Adults With Treatment-Resistant Epilepsies: Expanded Access Program Results Szaflarski JP, Bebin EM, Comi AM, et al; CBD EAP Study Group. Epilepsia. 2018;59(8):1540-1548.

OBJECTIVE:

Since 2014, cannabidiol (CBD) has been administered to patients with treatment-resistant epilepsies (TREs) in an ongoing expanded access program (EAP). We report interim results on the safety and efficacy of CBD in EAP patients treated through December 2016.

METHODS:

Twenty-five US-based EAP sites enrolling patients with TRE taking stable doses of antiepileptic drugs (AEDs) at baseline were included. During the 4-week baseline period, parents/caregivers kept diaries of all countable seizure types. Patients received oral CBD starting at 2 to 10 mg/kg/d, titrated to a maximum dose of 25 to 50 mg/kg/d. Patient visits were every 2 to 4 weeks through 16 weeks and every 2 to 12 weeks thereafter. Efficacy end points included the percentage change from baseline in median monthly convulsive and total seizure frequency and percentage of patients with ≥50%, ≥75%, and 100% reductions in seizures versus baseline. Data were analyzed descriptively for the efficacy analysis set and using the last-observation-carried-forward method to account for missing data. Adverse events (AEs) were documented at each visit.

RESULTS:

Of 607 patients in the safety data set, 146 (24%) withdrew; the most common reasons were lack of efficacy (89 [15%]) and AEs (32 [5%]). Mean age was 13 years (range, 0.4-62). Median number of concomitant AEDs was 3 (range, 0-10). Median CBD dose was 25 mg/kg/d; median treatment duration was 48 weeks. Add-on CBD reduced median monthly convulsive seizures by 51% and total seizures by 48% at 12 weeks; reductions were similar through 96 weeks. Proportion of patients with ≥50%, ≥75%, and 100% reductions in convulsive seizures were 52%, 31%, and 11%, respectively, at 12 weeks, with similar rates through 96 weeks. Cannabidiol was generally well tolerated; most common AEs were diarrhea (29%) and somnolence (22%).

SIGNIFICANCE:

Results from this ongoing EAP support previous observational and clinical trial data, showing that add-on CBD may be an efficacious long-term treatment option for TRE. Randomized, Dose-Ranging Safety Trial of Cannabidiol in Dravet Syndrome Devinsky O, Patel AD, Thiele EA, et al; GWPCARE1 Part A Study Group. Neurology. 2018;90(14):e1204-e1211.

OBJECTIVE:

To evaluate the safety and preliminary pharmacokinetics of a pharmaceutical formulation of purified cannabidiol (CBD) in children with Dravet syndrome.

METHODS:

Patients aged 4 to 10 years were randomized 4:1 to CBD (5, 10, or 20 mg/kg/d) or placebo taken twice daily. The double-blind trial comprised 4-week baseline, 3-week treatment (including titration), 10-day taper, and 4-week follow-up periods. Completers could continue in an open-label extension. Multiple pharmacokinetic blood samples were taken on the first day of dosing and at end of treatment for measurement of CBD, its metabolites 6-OH-CBD, 7-OH-CBD, and 7-COOH-CBD, and antiepileptic drugs (AEDs; clobazam and metabolite N-desmethylclobazam [N-CLB], valproate, levetiracetam, topiramate, and stiripentol). Safety assessments were clinical laboratory tests, physical examinations, vital signs, electrocardiograms, adverse events (AEs), seizure frequency, and suicidality.

RESULTS:

Thirty-four patients were randomized (10, 8, and 9 to the 5, 10, and 20 mg/kg/d CBD groups and 7 to placebo); 32 (94%) completed treatment. Exposure to CBD and its metabolites was dose proportional (AUC0-t). Cannabidiol did not affect concomitant AED levels, apart from an increase in N-CLB (except in patients taking stiripentol). The most common AEs on CBD were pyrexia, somnolence, decreased appetite, sedation, vomiting, ataxia, and abnormal behavior. Six patients taking CBD and valproate developed elevated transaminases; none met criteria for drug-induced liver injury and all recovered. No other clinically relevant safety signals were observed.

CONCLUSIONS:

Exposure to CBD and its metabolites increased proportionally with dose. An interaction with N-CLB was observed, likely related to CBD inhibition of cytochrome P450 subtype 2C19. Cannabidiol resulted in more AEs than placebo but was generally well tolerated.

CLASSIFICATION OF EVIDENCE:

This study provides class I evidence that for children with Dravet syndrome, CBD resulted in more AEs than placebo but was generally well tolerated.”

https://www.ncbi.nlm.nih.gov/pubmed/30955420

https://journals.sagepub.com/doi/10.1177/1535759719835671

Cannabidiol as adjunctive treatment of seizures associated with Lennox-Gastaut syndrome and Dravet syndrome.

“Epilepsy is one of the most common chronic disorders of the brain affecting around 70 million people worldwide. Treatment is mainly symptomatic, and most patients achieve long-term seizure control. Up to one-third of the affected subjects, however, are resistant to anticonvulsant therapy.

Lennox-Gastaut syndrome (LGS) and Dravet syndrome (DS) are severe, refractory epilepsy syndromes with onset in early childhood. Currently available interventions fail to control seizures in most cases, and there remains the need to identify new treatments.

Cannabidiol (CBD) is the first in a new class of antiepileptic drugs. It is a major chemical of the cannabis plant, which has antiseizure properties in absence of psychoactive effects.

This article provides a critical review of the pharmacology of CBD and the most recent clinical studies that evaluated its efficacy and safety as adjunctive treatment of seizures associated with LGS and DS.”

https://www.ncbi.nlm.nih.gov/pubmed/30938373

https://journals.prous.com/journals/servlet/xmlxsl/pk_journals.xml_summary_pr?p_JournalId=4&p_RefId=2909248&p_IsPs=N

Update on Antiepileptic Drugs 2019.

 Image result for ovid journal

“This article is an update from the article on antiepileptic drug (AED) therapy published in the last Continuum issue on epilepsy and is intended to cover the vast majority of agents currently available to the neurologist in the management of patients with epilepsy. Treatment of epilepsy starts with AED monotherapy. Knowledge of the spectrum of efficacy, clinical pharmacology, and modes of use for individual AEDs is essential for optimal treatment for epilepsy. This article addresses AEDs individually, focusing on key pharmacokinetic characteristics, indications, and modes of use.

RECENT FINDINGS:

Since the previous version of this article was published, three new AEDs, brivaracetam, cannabidiol, and stiripentol, have been approved by the US Food and Drug Administration (FDA), and ezogabine was removed from the market because of decreased use as a result of bluish skin pigmentation and concern over potential retinal toxicity.Older AEDs are effective but have tolerability and pharmacokinetic disadvantages. Several newer AEDs have undergone comparative trials demonstrating efficacy equal to and tolerability at least equal to or better than older AEDs as first-line therapy. The list includes lamotrigine, oxcarbazepine, levetiracetam, topiramate, zonisamide, and lacosamide. Pregabalin was found to be less effective than lamotrigine. Lacosamide, pregabalin, and eslicarbazepine have undergone successful trials of conversion to monotherapy. Other newer AEDs with a variety of mechanisms of action are suitable for adjunctive therapy. Most recently, the FDA adopted a policy that a drug’s efficacy as adjunctive therapy in adults can be extrapolated to efficacy in monotherapy. In addition, efficacy in adults can be extrapolated for efficacy in children 4 years of age and older. Both extrapolations require data demonstrating that an AED has equivalent pharmacokinetics between its original approved use and its extrapolated use. In addition, the safety of the drug in pediatric patients has to be demonstrated in clinical studies that can be open label. Rational AED combinations should avoid AEDs with unfavorable pharmacokinetic interactions or pharmacodynamic interactions related to mechanism of action.

SUMMARY:

Knowledge of AED pharmacokinetics, efficacy, and tolerability profiles facilitates the choice of appropriate AED therapy for patients with epilepsy.”

https://www.ncbi.nlm.nih.gov/pubmed/30921021

https://insights.ovid.com/crossref?an=00132979-201904000-00014

Safety, efficacy, and mechanisms of action of cannabinoids in neurological disorders.

The Lancet Neurology

“In the past two decades, there has been an increasing interest in the therapeutic potential of cannabinoids for neurological disorders such as epilepsy, multiple sclerosis, pain, and neurodegenerative diseases. Cannabis-based treatments for pain and spasticity in patients with multiple sclerosis have been approved in some countries. Randomised controlled trials of plant-derived cannabidiol for treatment of Lennox-Gastaut syndrome and Dravet syndrome, two severe childhood-onset epilepsies, provide evidence of anti-seizure effects. Despite positive results in these two severe epilepsy syndromes, further studies are needed to determine if the anti-seizure effects of cannabidiol extend to other forms of epilepsy, to overcome pharmacokinetic challenges with oral cannabinoids, and to uncover the exact mechanisms by which cannabidiol or other exogenous and endogenous cannabinoids exert their therapeutic effects.”

https://www.ncbi.nlm.nih.gov/pubmed/30910443

https://www.thelancet.com/journals/laneur/article/PIIS1474-4422(19)30032-8/fulltext

Cannabidiol: Recent advances and new insights for neuropsychiatric disorders treatment.

Life Sciences

“The pharmacological research on the Cannabis sativa-derived compounds has never terminated. Among the phytocannabinoids without psychotropic effects, the prevalent one in Cannabis is cannabidiol (CBD). Although CBD was initially considered a type 2 cannabinoid receptor (CB2R) antagonist, it did not show a good cannabinoidergic activity. Furthermore, heterogeneous results were obtained in experimental animal models of anxiety disorders, psychotic stages and neurodegenerative diseases. Recently, CBD has been authorized by the FDA to treat some rare forms of epilepsy and many trials have begun for the treatment of autism spectrum disorders. This review aims to clarify the pharmacological activity of CBD and its multiple therapeutic applications. Furthermore, critical and conflicting results of the research on CBD are discussed with a focus on promising future prospects.”

https://www.ncbi.nlm.nih.gov/pubmed/30910646

https://www.sciencedirect.com/science/article/abs/pii/S0024320519302176?via%3Dihub