Efficacy of CBD-enriched medical cannabis for treatment of refractory epilepsy in children and adolescents – An observational, longitudinal study.

Cover image volume 40, Issue 5

“The objective of this observational study was to evaluate the efficacy of medical cannabis for the treatment of refractory epilepsy.

Fifty-seven patients (age 1-20 years) with epilepsy of various etiologies were treated with Cannabis oil extract (CBD/THC ratio of 20:1) for at least 3 months (Median follow up time-18 months). Forty-Six Patients were included in the efficacy analysis. Average CBD dose was11.4 mg/kg/d.

Twenty-six patients (56%) had ≤50% reduction in mean monthly seizure frequency. There was no statistically significant difference in response rate among various epilepsy etiologies, and cannabis strain used.

Younger age at treatment onset (<10 years) and higher CBD dose (>11 mg/kg/d) were associated with better response to treatment. Adverse reactions were reported in 46% of patients and were the main reason for treatment cessation.

Our results suggest that adding CBD-enriched cannabis extract to the treatment regimen of patients with refractory epilepsy may result in a significant reduction in seizure frequency according to parental reports.”

Reefer to the Rescue: The Dope on Cannabidiol as a Multi-Symptom Panacea for Dravet Syndrome

American Epilepsy Society

“Dravet syndrome (DS) is a debilitating developmental disorder typified by severe seizures and delayed onset of psychomotor deficits.

In addition to increasing the risk for sudden unexpected death in epilepsy (SUDEP), the medically refractory status epilepticus in DS can be life-threatening, which makes it crucial to identify drugs to reduce seizures.

The quest for a viable drug to limit seizures in DS has intersected with the recent excitement over the potential use of cannabinoids as antiepileptic agents, leading to extensive anecdotal reports of the potential for cannabinoids to limit seizures in DS

Cannabinoids are active derivatives of the marijuana plant, Cannabis sativa.

The study reveals a strong preclinical basis for the use of CBD in DS. They find that CBD pre-treatment reduces both duration and severity of thermally-induced behavioral seizures.

In conclusion, Kaplan and colleagues provide the first preclinical demonstration that CBD may help alleviate seizures in a mouse model of DS validating the translational potential of CBD in patients with DS.

The demonstration that CBD improves deficits in social interactions in DS launches an exciting therapeutic possibility of alleviating behavioral impairments that persist beyond the seizures and pave the way for mechanistic studies that could positively impact treatment of autism spectrum disorders.”

http://epilepsycurrents.org/doi/10.5698/1535-7597.18.2.118?code=amep-site

Antiepileptogenic Effect of Subchronic Palmitoylethanolamide Treatment in a Mouse Model of Acute Epilepsy.

 Image result for frontiers in molecular neuroscience

“Research on the antiepileptic effects of (endo-)cannabinoids has remarkably progressed in the years following the discovery of fundamental role of the endocannabinoid (eCB) system in controlling neural excitability. Moreover, an increasing number of well-documented cases of epilepsy patients exhibiting multi-drug resistance report beneficial effects of cannabis use.

Pre-clinical and clinical research has increasingly focused on the antiepileptic effectiveness of exogenous administration of cannabinoids and/or pharmacologically induced increase of eCBs such as anandamide (also known as arachidonoylethanolamide [AEA]). Concomitant research has uncovered the contribution of neuroinflammatory processes and peripheral immunity to the onset and progression of epilepsy.

Accordingly, modulation of inflammatory pathways such as cyclooxygenase-2 (COX-2) was pursued as alternative therapeutic strategy for epilepsy. Palmitoylethanolamide (PEA) is an endogenous fatty acid amide related to the centrally and peripherally present eCB AEA, and is a naturally occurring nutrient that has long been recognized for its analgesic and anti-inflammatory properties.

Neuroprotective and anti-hyperalgesic properties of PEA were evidenced in neurodegenerative diseases, and antiepileptic effects in pentylenetetrazol (PTZ), maximal electroshock (MES) and amygdaloid kindling models of epileptic seizures. Moreover, numerous clinical trials in chronic pain revealed that PEA treatment is devoid of addiction potential, dose limiting side effects and psychoactive effects, rendering PEA an appealing candidate as antiepileptic compound or adjuvant.

In the present study, we aimed at assessing antiepileptic properties of PEA in a mouse model of acute epileptic seizures induced by systemic administration of kainic acid (KA).

Here, we demonstrate that subchronic administration of PEA significantly alleviates seizure intensity, promotes neuroprotection and induces modulation of the plasma and hippocampal eCB and eiC levels in systemic KA-injected mice.”

https://www.ncbi.nlm.nih.gov/pubmed/29593494

https://www.frontiersin.org/articles/10.3389/fnmol.2018.00067/full

Cannabis in epilepsy: From clinical practice to basic research focusing on the possible role of cannabidivarin.

 Epilepsia Open banner

“Cannabidivarin (CBDV) and cannabidiol (CBD) have recently emerged among cannabinoids for their potential antiepileptic properties, as shown in several animal models.

We report the case of a patient affected by symptomatic partial epilepsy who used cannabis as self-medication after the failure of countless pharmacological/surgical treatments.

After cannabis administration, a dramatic clinical improvement, in terms of both decrease in seizure frequency and recovery of cognitive functions, was observed, which might parallel high CBDV plasma concentrations.

Our patient’s electroclinical improvement supports the hypothesis that cannabis could actually represent an effective, well-tolerated antiepileptic drug.

Moreover, the experimental data suggest that CBDV may greatly contribute to cannabis anticonvulsant effect through its possible GABAergic action.”

https://www.ncbi.nlm.nih.gov/pubmed/29588939

https://onlinelibrary.wiley.com/doi/abs/10.1002/epi4.12015

Cannabidiol exerts antiepileptic effects by restoring hippocampal interneuron functions in a temporal lobe epilepsy model.

British Journal of Pharmacology banner

“A non-psychoactive phytocannabinoid, cannabidiol (CBD), shows promising results as an effective potential antiepileptic drug in some forms of refractory epilepsy.

In an attempt to understand the mechanisms by which CBD exerts its anti-seizure effects, we investigated the effects of CBD at synaptic connections, and the intrinsic membrane properties of hippocampal CA1 pyramidal cells and two major inhibitory interneurons: fast spiking, parvalbumin -expressing (PV) and adapting, cholecystokinin-expressing (CCK) interneurons.

CONCLUSIONS & IMPLICATIONS:

In conclusion, our data suggest CBD restores excitability and morphological impairment in epileptic models to pre-epilepsy control levels through multiple mechanisms to restore normal network function.”

https://www.ncbi.nlm.nih.gov/pubmed/29574880

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.14202

Pharmacological characterization of the cannabinoid receptor 2 agonist, β-caryophyllene on seizure models in mice.

Seizure - European Journal of Epilepsy Home

“Activation of CB1 receptors, produces anticonvulsant effect accompanied by memory disturbance both in animal seizure tests and in patients with epilepsy.

Few reports considered the role of CB2 receptor on seizure susceptibility and cognitive functions. The aim of the present study was to explore the effect of a selective CB2 receptor agonist β-caryophyllene (BCP) in models of seizures and cognition in mice.

CONCLUSION:

Our results suggest that the CB2 receptor agonists might be clinically useful as an adjunct treatment against seizure spread and status epilepticus and concomitant oxidative stress, neurotoxicity and cognitive impairments.”

https://www.ncbi.nlm.nih.gov/pubmed/29547827

http://www.seizure-journal.com/article/S1059-1311(17)30611-8/fulltext

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”  http://www.ncbi.nlm.nih.gov/pubmed/23138934

Randomized, dose-ranging safety trial of cannabidiol in Dravet syndrome.

Home

“To evaluate the safety and preliminary pharmacokinetics of a pharmaceutical formulation of purified cannabidiol (CBD) in children with Dravet syndrome.

Exposure to CBD and its metabolites increased proportionally with dose. An interaction with N-CLB was observed, likely related to CBD inhibition of cytochrome P450 subtype 2C19. CBD resulted in more AEs than placebo but was generally well-tolerated.

CLASSIFICATION OF EVIDENCE:

This study provides Class I evidence that for children with Dravet syndrome, CBD resulted in more AEs than placebo but was generally well-tolerated.”

https://www.ncbi.nlm.nih.gov/pubmed/29540584

http://n.neurology.org/content/early/2018/03/14/WNL.0000000000005254

Anticonvulsive effects of endocannabinoids; an investigation to determine the role of regulatory components of endocannabinoid metabolism in the Pentylenetetrazol induced tonic- clonic seizures.

Metabolic Brain Disease

“2-Arachidonoylglycerol (2-AG) and anandamide are two major endocannabinoids produced, released and eliminated by metabolic pathways.

Anticonvulsive effect of 2-AG and CB1 receptor is well-established. Herein, we designed to investigate the anticonvulsive influence of key components of the 2-AG and anandamide metabolism.

It seems extracellular accumulation of 2-AG or anandamide has anticonvulsive effect through the CB1 receptor, while intracellular anandamide accumulation is proconvulsive through TRPV1.”

https://www.ncbi.nlm.nih.gov/pubmed/29504066

https://link.springer.com/article/10.1007%2Fs11011-018-0195-5

Alterations of endocannabinoids in cerebrospinal fluid of dogs with epileptic seizure disorder.

Image result for bmc veterinary research

“Epilepsy is one of the most common chronic neurological disorders in dogs characterized by recurrent seizures. The endocannabinoid (EC) system plays a central role in suppressing pathologic neuronal excitability and in controlling the spread of activity in an epileptic network. Endocannabinoids are released on demand and their dysregulation has been described in several pathological conditions. Recurrent seizures may lead to an adverse reorganization of the EC system and impairment of its protective effect. In the current study, we tested the hypothesis that cerebrospinal fluid (CSF) concentrations of the endocannabinoids anandamide (AEA) and 2-arachidonoyl glycerol (2AG) are altered in epileptic dogs. Concentrations of AEA and total AG (sum of 2AG and 1AG) were measured in 40 dogs with idiopathic epilepsy and in 16 unaffected, healthy control dogs using liquid chromatography combined with tandem mass spectrometry.

RESULTS:

AEA and total AG were measured at 4.94 (3.18 – 9.17) pM and 1.43 (0.90 – 1.92) nM in epileptic dogs and at 3.19 (2.04 – 4.28) pM and 1.76 (1.08 – 2.69) nM in the control group, respectively (median, 25 – 75% percentiles in brackets). The AEA difference between epileptic and healthy dogs was statistically significant (p < 0.05). Values correlated with seizure severity and duration of seizure activity. Dogs with cluster seizures and/or status epilepticus and with seizure activity for more than six months displayed the highest EC concentrations.

CONCLUSION:

In conclusion, we present the first endocannabinoid measurements in canine CSF and confirm the hypothesis that the EC system is altered in canine idiopathic epilepsy.”

https://www.ncbi.nlm.nih.gov/pubmed/24370333

“In conclusion, we demonstrated an elevation of CSF AEA concentrations in dogs with idiopathic epilepsy. The highest AEA concentrations were found in dogs with severe seizures and a long disease history. Possibly, the activation of the EC system serves as a counter-mechanism in order to regulate the seizure-threshold in epilepsy. However, the EC system can either alter or be altered by seizure activity, so that further, prospective studies are warranted to investigate pathological mechanisms. Despite endocannabinoids can be synthesized “on demand”, the EC system should be considered for development of new treatment strategies against epilepsy.”

https://bmcvetres.biomedcentral.com/articles/10.1186/1746-6148-9-262

Cannabidiol for treatment of refractory childhood epilepsies: Experience from a single tertiary epilepsy center in Slovenia.

“Refractory epilepsies in children present a major burden for patients and their families. Cannabidiol (CBD) has been suggested as a potential treatment for refractory epilepsies. The aim of this study was to evaluate the effectiveness of add-on therapy with CBD for the treatment of refractory childhood epilepsies.

METHOD:

Patients with childhood-onset refractory epilepsy, treated at the tertiary epilepsy center of the University Children’s Hospital Ljubljana, Slovenia, were included in the study. Add-on therapy with CBD was initiated once the child’s epilepsy was categorized as pharmacoresistant to other antiepileptic drugs/therapies. The dosage of CBD was gradually increased to at least 8mg/kg/day. The effect of CBD treatment was evaluated by the reduction in seizure burden and presence of side effects (positive and negative). Serial electroencephalography was performed in some children.

RESULTS:

Sixty-six patients were included in the analysis. Thirty-two (48.5%) patients had a more than 50% improvement regarding seizure burden, 14 of whom (21.2%) became seizure-free. None of the patients reported worsening of seizure frequency, but CBD had no effect in 15 (22.7%) patients. Some patients reported less vigorous seizures, shorter duration of seizures, shorter time to recovery, and other positive side effects of CBD treatment. Adverse effects were reported in 5/66 children.

CONCLUSIONS:

In our cohort of patients, CBD was found to have potential benefits as add-on therapy for refractory childhood epilepsies, mainly by reducing seizure burden.”

https://www.ncbi.nlm.nih.gov/pubmed/29526578

http://www.epilepsybehavior.com/article/S1525-5050(17)30942-3/fulltext