Issues and promise in clinical studies of botanicals with anticonvulsant potential.

“Botanicals are increasingly used by people with epilepsy worldwide. However, despite abundant preclinical data on the anticonvulsant properties of many herbal remedies, there are very few human studies assessing safety and efficacy of these products in epilepsy.Additionally, the methodology of most of these studies only marginally meets the requirements of evidence-based medicine.

Although the currently available evidence for the use of cannabinoids in epilepsy is similarly lacking, several carefully designed and well controlled industry-sponsored clinical trials of cannabis derivatives are planned to be completed in the next couple of years, providing the needed reliable data for the use of these products.

The choice of the best botanical candidates with anticonvulsant properties and their assessment in well-designed clinical trials may significantly improve our ability to effectively and safely treat patients with epilepsy. ”

http://www.ncbi.nlm.nih.gov/pubmed/26341963

http://www.thctotalhealthcare.com/category/epilepsy-2/

High dosage of cannabidiol (CBD) alleviates pentylenetetrazole-induced epilepsy in rats by exerting an anticonvulsive effect.

“The study was designed to investigate the effect of various concentrations of cannabidiol (CBD) in rats with chronic epilepsy.

The results revealed a significant decrease in the daily average grade of epileptic seizures on treatment with CBD (50 mg/kg).

The neuronal loss and astrocyte hyperplasia in the hippocampal area were also decreased.

CBD treatment did not affect the expression of iNOS in the hippocampus; however, the expression of NR1 was decreased significantly.

Thus, CBD administration inhibited the effect of pentylenetetrazole in rats, decreased the astrocytic hyperplasia, decreased neuronal damage in the hippocampus caused by seizures and selectively reduced the expression of the NR1 subunit of NMDA.

Therefore, CBD exhibits an anticonvulsive effect in the rats with chronic epilepsy.”

http://www.ncbi.nlm.nih.gov/pubmed/26309534

“Epilepsy is one of the most common diseases of the brain, affecting at least 50 million people globally… Despite development of a number of new antiepileptic drugs, epilepsy could not be significantly reduced and is a challenge to the clinicians… Many plants, known for their anticonvulsant activity are subjected to phytochemical and pharmacological studies. Cannabidiol (CBD) a constituent of the hemp seed exhibits potent anticonvulsant activity…  The CBD possess anticonvulsive, anti-epileptic, and antimicrobial properties… The present study was performed to examine the anticonvulsive effects of CBD in pentylenetetrazole-induced chronic epilepsy rat models… The present study demonstrates that CBD protects against pentylenetetrazole-induced chronic seizures, decreases astrocytic hyperplasia, decreases neuronal cell loss and selectively suppresses NMDA1 receptor in the hippocampus… Therefore, CBD exhibits an anticonvulsive effect in the rats with chronic epilepsy.”  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537971/

Marijuana Use in Epilepsy: The Myth and the Reality.

“Marijuana has been utilized as a medicinal plant to treat a variety of conditions for nearly five millennia.

Over the past few years, there has been an unprecedented interest in using cannabis extracts to treat epilepsy, spurred on by a few refractory pediatric cases featured in the media that had an almost miraculous response to cannabidiol-enriched marijuana extracts.

This review attempts to answer the most important questions a clinician may have regarding the use of marijuana in epilepsy. First, we review the preclinical and human evidences for the anticonvulsant properties of the different cannabinoids, mainly tetrahydrocannabinol (THC) and cannabidiol (CBD).

Then, we explore the safety data from animal and human studies. Lastly, we attempt to reconcile the controversy regarding physicians’ and patients’ opinions about whether the available evidence is sufficient to recommend the use of marijuana to treat epilepsy.”

http://www.ncbi.nlm.nih.gov/pubmed/26299273

http://www.thctotalhealthcare.com/category/epilepsy-2/

Cannabinoids and Epilepsy.

“Cannabis has been used for centuries to treat seizures.

Recent anecdotal reports, accumulating animal model data, and mechanistic insights have raised interest in cannabis-based antiepileptic therapies.

In this study, we review current understanding of the endocannabinoid system, characterize the pro- and anticonvulsive effects of cannabinoids [e.g., Δ9-tetrahydrocannabinol and cannabidiol (CBD)], and highlight scientific evidence from pre-clinical and clinical trials of cannabinoids in epilepsy.

These studies suggest that CBD avoids the psychoactive effects of the endocannabinoid system to provide a well-tolerated, promising therapeutic for the treatment of seizures, while whole-plant cannabis can both contribute to and reduce seizures.

Finally, we discuss results from a new multicenter, open-label study using CBD in a population with treatment-resistant epilepsy. In all, we seek to evaluate our current understanding of cannabinoids in epilepsy and guide future basic science and clinical studies.”

http://www.ncbi.nlm.nih.gov/pubmed/26282273

Cannabinoids: is there a potential treatment role in epilepsy?

“Cannabinoids have been used medicinally for centuries, and in the last decade, attention has focused on their broad therapeutic potential particularly in seizure management.

While some cannabinoids have demonstrated anticonvulsant activity in experimental studies, their efficacy for managing clinical seizures has not been fully established.

This commentary will touch on our understanding of the brain endocannabinoid system’s regulation of synaptic transmission in both physiological and pathophysiological conditions, and review the findings from both experimental and clinical studies on the effectiveness of cannabinoids to suppress epileptic seizures.

At present, there is preliminary evidence that non-psychoactive cannabinoids may be useful as anticonvulsants, but additional clinical trials are needed to fully evaluate the efficacy and safety of these compounds for the treatment of epilepsy.”

http://www.ncbi.nlm.nih.gov/pubmed/26234319

ACEA (a highly selective cannabinoid CB1 receptor agonist) stimulates hippocampal neurogenesis in mice treated with antiepileptic drugs.

“Hippocampal neurogenesis plays a very important role in learning and memory functions.

In a search for best neurological drugs that protect neuronal cells and stimulate neurogenesis with no side effects, cannabinoids proved to be a strong group of substances having many beneficial properties.

The aim of this study was to evaluate the impact of ACEA (arachidonyl-2′-chloroethylamide – a highly selective cannabinoid CB1 receptor agonist) combined with a classical antiepileptic drug sodium valproate (VPA) on neural precursor cells’ proliferation and differentiation in the mouse brain.

VPA administered alone decreased the number of newly born neurons with no significant impact on neurogenesis.

These data provide substantial evidence that VPA administered chronically slightly decreases the proliferation and differentiation of newly born cells while combination of VPA+ACEA significantly increases the level of newborn neurons in the dentate subgranular zone.”

http://www.ncbi.nlm.nih.gov/pubmed/26225920

Therapeutic potential of cannabis-related drugs.

“In this review, I will consider the dual nature of Cannabis and cannabinoids.

The duality arises from the potential and actuality of cannabinoids in the laboratory and clinic and the ‘abuse’ of Cannabis outside the clinic.

The therapeutic areas currently best associated with exploitation of Cannabis-related medicines include pain, epilepsy, feeding disorders, multiple sclerosis and glaucoma.

As with every other medicinal drug of course, the ‘trick’ will be to maximise the benefit and minimise the cost.

After millennia of proximity and exploitation of the Cannabis plant, we are still playing catch up with an understanding of its potential influence for medicinal benefit.”

http://www.ncbi.nlm.nih.gov/pubmed/26216862

Interaction between Cannabinoid Compounds and Capsazepine in Protection against Acute Pentylenetetrazole-induced Seizure in Mice.

“The pharmacological interaction between cannabinoidergic system and vanilloid type 1 (TRPV1) channels has been investigated in various conditions such as pain and anxiety.

In some brain structure including hippocampus, CB1 and TRPV1 receptors coexist and their activation produces opposite effect on excitability of neurons.

In this study, we tested the hypothesis that TRPV1 channel is involved in the modulation of cannabinoid effects on pentylenetetrazole (PTZ)-induced seizure threshold…

The anticonvulsant actions of both capsazepine and ACEA were attenuated after co-administration of these compounds. Moreover, the anticonvulsant action of capsazepine was attenuated after co-administration with VDM11.

The results suggest an interaction between cannabinoidergic system and TRPV1 receptors in protection against acute PTZ-induced seizure in mice.”

http://www.ncbi.nlm.nih.gov/pubmed/26185513

[Changes over time of cannabinoid receptor 1 in hippocampus of status epilepticus rats].

To explore the changes over time of cannabinoid receptor 1 (CB1R) in hippocampus of status epilepticus (SE) rats…

There is a protective increase of CB1R in hippocampus of SE rats and then it returns to normal.

Thus CB1R may he involved in the occurrences and terminations of seizures.”

http://www.ncbi.nlm.nih.gov/pubmed/26168676

http://www.thctotalhealthcare.com/category/epilepsy-2/

Cannabinoid and nitric oxide signalling interplay in the modulation of hippocampal hyperexcitability: study on electrophysiological and behavioural models of temporal lobe epilepsy in the rat.

“A growing bulk of evidence suggests that cannabinoid system plays a pivotal role in the control of hyperexcitability phenomena.

Notwithstanding, the anticonvulsant action of cannabinoids has not been fully addressed, in particular the involvement of potential cellular neuromodulators, for instance nitric oxide.

In the current study, we focused on two distinct rat models of temporal lobe epilepsy, the Maximal Dentate Activation and the Pilocarpine-induced acute seizures, providing both electrophysiological and behavioural data on cannabinoid and nitrergic system interplay.

MDA study showed that these drugs protected animals in a dose-dependent manner from electrically-induced epileptiform discharges.

In the light of this, our findings suggest a putative antagonism between CBr-activated pathway and NO signalling in the context of neuronal hyperexcitability and contribute to elucidate possible synaptic processes underlying neuroprotective properties of cannabinoids, with a view to better integrate antiepileptic therapy.”

http://www.ncbi.nlm.nih.gov/pubmed/26135674