The therapeutic potential of novel cannabinoid receptors.

Cover image

“Cannabinoids produce a plethora of biological effects, including the modulation of neuronal activity through the activation of CB(1) receptors and of immune responses through the activation of CB(2) receptors. The selective targeting of either of these two receptor subtypes has clear therapeutic value. Recent evidence indicates that some of the cannabinomimetic effects previously thought to be produced through CB(1) and/or CB(2) receptors, be they on neuronal activity, on the vasculature tone or immune responses, still persist despite the pharmacological blockade or genetic ablation of CB(1) and/or CB(2) receptors. This suggests that additional cannabinoid and cannabinoid-like receptors exist. Here we will review this evidence in the context of their therapeutic value and discuss their true belonging to the endocannabinoid signaling system.”  http://www.ncbi.nlm.nih.gov/pubmed/19248809

“The therapeutic potential of novel cannabinoid receptors”  http://www.sciencedirect.com/science/article/pii/S0163725809000266

The cannabinoid system and immune modulation

Figure 1.

“Studies on the effects of marijuana smoking have evolved into the discovery and description of the endocannabinoid system. To date, this system is composed of two receptors, CB1 and CB2, and endogenous ligands including anandamide, 2-arachidonoyl glycerol, and others. CB1 receptors and ligands are found in the brain as well as immune and other peripheral tissues. Conversely, CB2 receptors and ligands are found primarily in the periphery, especially in immune cells. Cannabinoid receptors are G protein-coupled receptors, and they have been linked to signaling pathways and gene activities in common with this receptor family. In addition, cannabinoids have been shown to modulate a variety of immune cell functions in humans and animals and more recently, have been shown to modulate T helper cell development, chemotaxis, and tumor development. Many of these drug effects occur through cannabinoid receptor signaling mechanisms and the modulation of cytokines and other gene products.

It appears the immunocannabinoid system is involved in regulating the brain-immune axis and might be exploited in future therapies for chronic diseases and immune deficiency.”

“The medicinal uses of marijuana were described centuries ago for diseases such as asthma, migraine, pain, convulsions, and anxiety (reviewed in ref.). More recently, emphasis has been placed on marijuana’s putative, beneficial effects on appetite, glaucoma, spasticity in multiple sclerosis, pain, and inflammation.

Recent experimental evidence supports marijuana’s therapeutic potential in some of these maladies.

The active plant ingredients in marijuana belong to the C21-cannabinoid compounds including the primary psychoactive compound, Δ9-tetrahydrocannabinol (THC). This cannabinoid along with others such as Δ8-THC, cannabidiol, and cannabinol, as well as chemical analogs, have been extensively studied over the years for their biological and therapeutic properties. Some of the properties of these agents have included effects on immunity ranging from suppression of resistance to infection to enhancement of IL-1 production by macrophages. These early studies about the immunomodulating effects of these drugs have been the subject of previous overviews and will not be reviewed here. Instead, we will briefly summarize the general features of the cannabinoid system and review recent findings on the structure and function of the cannabinoid system components in the immune system. For convenience, we will refer to this as the “immunocannabinoid” system.

CANNABINOID SYSTEM

Marijuana cannabinoids, analogs, and endocannabinoids”

https://jlb.onlinelibrary.wiley.com/doi/full/10.1189/jlb.0303101?sid=nlm%3Apubmed

The Endocannabinoid System and the Brain.

Abstract

“The psychoactive constituent in cannabis, Δ(9)-tetrahydrocannabinol (THC), was isolated in the mid-1960s, but the cannabinoid receptors, CB1 and CB2, and the major endogenous cannabinoids (anandamide and 2-arachidonoyl glycerol) were identified only 20 to 25 years later. The cannabinoid system affects both central nervous system (CNS) and peripheral processes. In this review, we have tried to summarize research-with an emphasis on recent publications-on the actions of the endocannabinoid system on anxiety, depression, neurogenesis, reward, cognition, learning, and memory. The effects are at times biphasic-lower doses causing effects opposite to those seen at high doses. Recently, numerous endocannabinoid-like compounds have been identified in the brain. Only a few have been investigated for their CNS activity, and future investigations on their action may throw light on a wide spectrum of brain functions. Expected final online publication date for the Annual Review of Psychology Volume 64 is November 30, 2012. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.”

http://www.ncbi.nlm.nih.gov/pubmed/22804774