The effects of cannabidiol and Δ9-tetrahydrocannabinol, alone and in combination, in the maximal electroshock seizure model

Epilepsy Research

“In the present study, cannabidiol (CBD), Δ9-tetrahydrocannabinol (THC), and combinations of CBD and THC, were evaluated in the mouse maximal electroshock (MES) seizure test – an animal model of generalized-onset seizures. Male CF-1 mice were injected intraperitoneally (i.p.) with either CBD, THC or a combination of CBD and THC. The MES test was conducted 2 h after the injection of CBD and 1 h after the injection of THC. A wide range of doses was tested to allow the construction of dose-response curves. Toxicity was assessed using a behavioral rating scale.

It was found that: 1) the ED50 for THC alone was 52 mg/kg and its therapeutic index (TI) was 1.7; 2) the ED50 for CBD alone was 190 mg/kg and its TI was 2.4; and 3) the ED50 for a 15:1 combination of CBD+THC was 130 mg/kg + 8.6 mg/kg (CBD + THC). Thus, CBD and THC were both effective in the MES model, and CBD was somewhat more effective in the presence of low (non-therapeutic) doses of THC.

The improvement in CBD’s effect, however, was less dramatic than that seen in past experiments with the amygdala-kindling model (Fallah et al., 2021). Both CBD alone and CBD+THC in combination might be useful in the treatment of generalized-onset seizures. The advantage of adding THC to CBD, however, might be less than in the treatment of focal-onset seizures.”

https://pubmed.ncbi.nlm.nih.gov/36646020/

https://www.sciencedirect.com/science/article/abs/pii/S0920121123000128?via%3Dihub

Clinical Outcome Data of Children Treated with Cannabis Based Medicinal Products for Treatment Resistant Epilepsy – Analysis from the UK Medical Cannabis Registry

“Background There is a paucity of high-quality evidence of the efficacy and safety of cannabis-based medicinal products in treatment of treatment-resistant epilepsy (TRE) in children.

Methods A case series of children(<18 years old) with TRE from the UK Medical Cannabis Registry was analysed. Primary outcomes were ≥50% reduction in seizure frequency, changes in the Impact of Paediatric Epilepsy Score(IPES) and incidence of adverse events.

Results Thirty-five patients were included in the analysis. Patients were prescribed during their treatment with the following-CBD isolate oils(n=19), CBD broad-spectrum oils(n=17), and CBD/Δ9-THC combination therapy(n=17). Twenty-three(65.7%) patients achieved a ≥50% reduction in seizure frequency. 94.1%(n=16) of patients treated with CBD and Δ9-THC observed a ≥50% reduction in seizure frequency compared to 31.6%(n=6) and 17.6%(n=3) of patients treated with CBD isolates and broad-spectrum CBD products respectively(p<0.001). Twenty-six(74.3%) adverse events were reported by 16 patients(45.7%). The majority of these were mild(n=12; 34.2%) and moderate(n=10; 28.6%).

Conclusions The results of this study demonstrate a positive signal of improved seizure frequency in children treated with CBMPs for TRE. Moreover, the results suggest that CBMPs are well-tolerated in the short term. The limitations mean causation cannot be determined in this open-label, case series.”

https://pubmed.ncbi.nlm.nih.gov/36539215/

https://www.thieme-connect.de/products/ejournals/abstract/10.1055/a-2002-2119

Long-term efficacy and safety of cannabidiol in patients with treatment-resistant epilepsies: 4-year results from the expanded access program

“Objective: Cannabidiol (CBD) expanded access program (EAP), initiated in 2014, provided add-on CBD to patients with treatment-resistant epilepsy (TRE) at 35 US epilepsy centers. Prior publications reported results through December 2016; herein, we present efficacy and safety results through January 2019.

Methods: Patients received plant-derived highly purified CBD (Epidiolex®; 100 mg/mL oral solution), increasing from 2-10 mg/kg/d to tolerance or maximum 25-50 mg/kg/d dose, depending on the study site. Efficacy endpoints included percentage change from baseline in median monthly convulsive and total seizure frequency and ≥50%, ≥75%, and 100% responder rates across 12-week visit windows for up to 192 weeks. Adverse events (AEs) were documented at each visit.

Results: Of 892 patients in the safety analysis set, 322 (36%) withdrew; lack of efficacy (19%) and AEs (7%) were the most commonly reported primary reasons for withdrawal. Median (range) age was 11.8 years (0-74.5), and patients were taking a median (range) 3 (0-10) antiseizure medications (ASMs) at baseline; most common ASMs were clobazam (47%), levetiracetam (34%), and valproate (28%). Median top CBD dose was 25 mg/kg/d; median exposure duration was 694 days. Median percentage reduction from baseline ranged from 50%-67% for convulsive seizures and 46%-66% for total seizures. Convulsive seizure responder rates (≥50%, ≥75%, and 100% reduction) ranged from 51%-59%, 33%-42%, and 11%-17% of patients across visit windows, respectively. AEs were reported in 88% of patients and serious AEs in 41%; 8% withdrew because of an AE. There were 20 deaths during the study deemed unrelated to treatment by the investigator. Most common AEs (≥20% of patients) were diarrhea (33%), seizure (24%), and somnolence (23%).

Significance: Add-on CBD was associated with sustained seizure reduction up to 192 weeks with an acceptable safety profile and can be used for long-term treatment of TREs.”

https://pubmed.ncbi.nlm.nih.gov/36537757/

https://onlinelibrary.wiley.com/doi/10.1111/epi.17496

Use of cannabidiol in the treatment of epilepsy: Lennox-Gastaut syndrome, Dravet syndrome, and tuberous sclerosis complex

“Objective: The objective of this systematic review with meta-analysis was to evaluate the efficacy, safety, and short- and long-term tolerability of cannabidiol (CBD), as an adjunct treatment, in children and adults with Dravet syndrome (SD), Lennox-Gataut syndrome (LGS), or tuberous sclerosis complex (TSC), with inadequate control of seizures.

Methods: This systematic review was conducted through a search for scientific evidence in the Mediline/PubMed, Central Cochrane, and ClinicalTrials.gov databases until April 2022. Selected randomized clinical trials (RCTs) that presented the outcomes: reduction in the frequency of seizures and total seizures (all types), number of patients with a response greater than or equal to 50%, change in caregiver global impression of change (CGIC) (improvement ≥1 category on the initial scale), adverse events (AEs), and tolerability to treatment. This review followed Preferred Reporting Items for Systematic reviews and Meta-Analyses.

Results: Notably, six RCTs were included, with a total of 1,034 patients with SD, LGS, and TSC, of which 3 were open-label extension RCTs. The meta-analysis of the studies showed that the use of CBD as compared with placebo, in patients with convulsive seizures refractory to the use of medications, reduces the frequency of seizures by 33%; increases the number of patients with a reduction ≥50% in the frequency of seizures by 20%; increases the number of patients with absence of seizures by 3%; improves the clinical impression evaluated by the caregiver or patient (S/CGIC) in 21%; increases total AEs by 12%; increases serious AE by 16%; increases the risk of treatment abandonment by 12%; and increases the number of patients with transaminase elevation (≥3 times the referral) by 15%.

Conclusions: This systematic review, with meta-analysis, supports the use of CBD in the treatment of patients with seizures, originated in DS, LGS, and TSC, who are resistant to the common medications, presenting satisfactory benefits in reducing seizures and tolerable toxicity.”

https://pubmed.ncbi.nlm.nih.gov/36417631/

https://www.scielo.br/j/ramb/a/vh3QpdBkQfXVrdw7nT63bdd/?lang=en

Cannabidiol in refractory status epilepticus: A review of clinical experiences

Seizure (journal) - Wikipedia

“Objective: To summarize and evaluate clinical experiences with refractory status epilepticus in which cannabidiol (CBD) was utilized for cessation of seizure activity.

Methods: A comprehensive literature review was performed on PubMED, MEDLINE, Scopus, and CINAHL between May – June 2022 with the assistance of a medical reference librarian using the following search terms: “Cannabidiol” [MAJR], “Status Epilepticus” [MAJR], “New-Onset Refractory Status Epilepticus”, and “cannabidiol.” Reports that provided dosing regimens and patient outcomes were included.

Results: Thirty-two articles were screened. Five articles were selected for inclusion in this review and detailed the clinical courses of 11 patients. Five of the 11 patients received CBD during the chronic epilepsy stage, while the remaining 6 received it during a period of acute status epilepticus. Patients were trialed on an average of 9 anti-epileptic drugs prior to CBD administration, after which 9 of the 11 patients experienced a reduction of seizure activity. Dosing of CBD ranged between 5-25 mg/kg/day and was titrated based on patient response to therapy. Adverse effects were relatively benign and were generally limited to gastrointestinal discomfort, reported after seizure cessation.

Conclusions: CBD may provide a potentially efficacious and safe management strategy in refractory status epilepticus, including patients with new-onset refractory status epilepticus and febrile infection-related epilepsy syndrome. A potential for drug-drug interactions between CBD and anti-epileptic drugs warrants judicious monitoring. Additional research is necessary to determine a definitive dosing strategy for this agent.”

https://pubmed.ncbi.nlm.nih.gov/36399869/

“The efficacy and safety of CBD has been demonstrated in Lennox-Gastaut and Darvet Syndromes.”

https://www.seizure-journal.com/article/S1059-1311(22)00260-6/fulltext

The anticonvulsant phytocannabinoids CBGVA and CBDVA inhibit recombinant T-type channels

Frontiers - Crunchbase Company Profile & Funding

“Introduction: Cannabidiol (CBD) has been clinically approved for intractable epilepsies, offering hope that novel anticonvulsants in the phytocannabinoid class might be developed. Looking beyond CBD, we have recently reported that a series of biosynthetic precursor molecules found in cannabis display anticonvulsant properties. However, information on the pharmacological activities of these compounds on CNS drug targets is limited. The current study aimed to fill this knowledge gap by investigating whether anticonvulsant phytocannabinoids affect T-type calcium channels, which are known to modulate neuronal excitability, and may be relevant to the anti-seizure effects of this class of compounds. 

Materials and methods: A fluorescence-based assay was used to screen the ability of the phytocannabinoids to inhibit human T-type calcium channels overexpressed in HEK-293 cells. A subset of compounds was further examined using patch-clamp electrophysiology. Alphascreen technology was used to characterise selected compounds against G-protein coupled-receptor 55 (GPR55) overexpressed in HEK-293 cells, as GPR55 is another target of the phytocannabinoids. 

Results: A single 10 µM concentration screen in the fluorescence-based assay showed that phytocannabinoids inhibited T-type channels with substantial effects on Cav3.1 and Cav3.2 channels compared to the Cav3.3 channel. The anticonvulsant phytocannabinoids cannabigerovarinic acid (CBGVA) and cannabidivarinic acid (CBDVA) had the greatest magnitudes of effect (≥80% inhibition against Cav3.1 and Cav3.2), so were fully characterized in concentration-response studies. CBGVA and CBDVA had IC50 values of 6 μM and 2 µM on Cav3.1 channels; 2 μM and 11 µM on Cav3.2 channels, respectively. Biophysical studies at Cav3.1 showed that CBGVA caused a hyperpolarisation shift of steady-state inhibition. Both CBGVA and CBDVA had a use-dependent effect and preferentially inhibited Cav3.1 current in a slow inactivated state. CBGVA and CBDVA were also shown to antagonise GPR55. 

Conclusion and implications: These findings show that CBGVA and CBDVA inhibit T-type calcium channels and GPR55. These compounds should be further investigated to develop novel therapeutics for treating diseases associated with dysfunctional T-type channel activity.”

https://pubmed.ncbi.nlm.nih.gov/36386164/

“Here we report that the understudied minor phytocannabinoids CBDVA and CBGVA, which are biosynthetic precursor molecules found in the cannabis plant, inhibit both T-type calcium channels and GPR55 receptors in vitro. Our data suggest that these compounds could be further explored for therapeutic potential in disease states which involve these channels or receptors, such as epilepsy, insomnia, pain and gastrointestinal disorders.”

https://www.frontiersin.org/articles/10.3389/fphar.2022.1048259/full

Design and function of targeted endocannabinoid nanoparticles

Scientific Reports

“Nanoparticles and nano-delivery systems are constantly being refined and developed for biomedical applications such as imaging, gene therapy, and targeted delivery of drugs. Nanoparticles deliver beneficial effects by both release of their cargo and by liberation of their constitutive structural components. The N-acylethanolamines linoleoyl ethanolamide (LEA) and oleoyl ethanolamide (OEA) both exhibit endocannabinoid-like activity. Here, we report on their ability to form nanoparticles that when conjugated with tissue-specific molecules, are capable of localizing to specific areas of the body and reducing inflammation. The facilitation of pharmacological effects by endocannabinoids at targeted sites provides a novel biocompatible drug delivery system and a therapeutic approach to the treatment, patient management and quality of life, in conditions such as arthritis, epilepsy, and cancer.”

https://pubmed.ncbi.nlm.nih.gov/36241847/

https://www.nature.com/articles/s41598-022-21715-1

Cannabidiol inhibits microglia activation and mitigates neuronal damage induced by kainate in an in-vitro seizure model

Neurobiology of Disease

“Background: Epilepsy is one of the most common brain disorder and, despite the possible use of several therapeutic options, many patients continue to have seizures for their entire lifespan and they need new therapeutic approaches. In the last years the interest on the non-psychoactive compounds present in Cannabis sativa has massively increased, and cannabidiol (CBD) has been shown to be effective in the treatment of different types of neurological disorders and neurodegenerative diseases such as epilepsy, ischemia, multiple sclerosis and Alzheimer’s Disease.

Methods: We investigated the effects of the selected cannabinoids, Δ9-tetrahydrocannabinol (THC), CBD and cannabigerol (CBG) in rat organotypic hippocampal slices exposed to kainate, an in vitro seizure model. Cell death in the cornu Ammonis 3 (CA3) hippocampal subregion was quantified by propidium iodide fluorescence. Morphological analysis and tissue organization were examined by immunohistochemistry and confocal microscopy and microglia activation and polarization was evaluated using flow cytometry and morphology analysis .

Results: When present in the incubation medium, cannabidiol reduced dose-dependent CA3 injury induced by kainate. Conversely, incubation with THC exacerbated hippocampal damage. The neuroprotective effects of cannabidiol were blocked by TRPV1, TRPV2, 5-HT1A, and PPARγ antagonists. Confocal microscopy confirmed that CBD but not THC had a significant protective effect against neuronal damage and tissue disorganization caused by kainate. Cannabidiol incubation significantly block the microglia activation from the M0 to M1 phenotype observed in the kainate in-vitro seizure model, pushing toward a transition from M0 to M2 .

Conclusions: Our results suggest that CBD mitigated neuronal damage induced by kainate and blocked the transition from the M0 to the M1 phenotype.”

https://pubmed.ncbi.nlm.nih.gov/36240948/

“These findings support the idea that CBD may became a valid and safe therapeutic intervention in the treatment of epilepsy.”

https://www.sciencedirect.com/science/article/pii/S09999612200287X?via%3Dihub

Preclinical efficacy of cannabidiol for the treatment of early-life seizures

SpringerLink

“Background: The treatment of epilepsy during early life poses unique challenges-first-line therapies leave many individuals with poorly controlled seizures. In response to the pharmaco-resistance of current first-line anti-seizure drugs (ASDs) during early life, new therapies have emerged. One such therapy is cannabidiol (CBD). While well studied in adult models of epilepsy, it is poorly studied in immature animals. Here we assessed the efficacy of CBD in immature rodent models of the epilepsies.

Methods: Pups were pre-treated with CBD (1, 10, 50, 100, 200 mg/kg) and assessed for anticonvulsant efficacy using two well-established anti-seizure screening models: the pentylenetetrazole (PTZ) and maximal electroshock (MES) models. We assessed drug efficacy in postnatal day (P)7 and P21 rats.

Results: In the PTZ model, CBD delayed seizure onset in adolescent but not neonatal rats. By contrast, higher doses of CBD reduced seizure duration in both neonatal and adolescent rats in the MES model. The effects of CBD in both models were modest but consistent.

Conclusion: Efficacy of CBD increased in older as compared to younger animals, producing an age-, model-, and dose-dependent suppression of seizures. These data suggest neonatal seizures (modeled by P7 treatment) may be less responsive to CBD. They also suggest preferential efficacy against tonic seizures as compared to partial motor seizures.”

https://pubmed.ncbi.nlm.nih.gov/36220975/

https://link.springer.com/article/10.1007/s43440-022-00413-9

Efficacy of the FDA-approved cannabidiol on the development and persistence of temporal lobe epilepsy and complex focal onset seizures

Experimental Neurology

“Presently there is no drug therapy for curing epilepsy. Despite many advancements in epilepsy research, nearly 30% of people with epilepsy remain refractory to current antiseizure medications (ASM).

Cannabidiol (CBD) has recently been approved as an ASM for pediatric refractory seizures, but it has not been widely tested for adult epileptogenesis and focal onset seizures.

In this study, we investigated the efficacy of the FDA-approved CBD in controlling epileptogenesis and complex focal onset seizures using the mouse kindling model of human temporal lobe epilepsy. We also tested combination regimens of CBD with other ASMs.

The two primary outcome measures were disease modification and suppression of generalized seizures.

In the epileptogenesis study, CBD had a striking effect in attenuating kindling development, with a dose-dependent decrease in behavioral and electrographic seizure activity.

In the retention study, mice previously treated with CBD had significantly reduced overall seizure burden, suggesting disease modification.

In a fully-kindled seizure study, CBD produced rapid and atypical U-shaped dose-dependent protection against generalized seizures (ED50, 52 mg/kg, i.p.).

In a time-course study, CBD showed a maximal protective effect within 1 h of injection, and it declined within 4 h with a biphasic response.

In the combination study, CBD produced synergistic/ additive protection when given with midazolam and ganaxolone, but not with tiagabine, indicating its strong potential as an adjunct ASM. Finally, the protective effects of CBD were not associated with motor and functional impairments.

These preclinical findings demonstrate the potential of adjunct CBD for controlling adult complex focal onset seizure conditions.”

https://pubmed.ncbi.nlm.nih.gov/36216124/

“CBD has strong antiseizure activity in the adult kindling model of epilepsy.. It has a disease-modifying effect by reducing the overall seizure burden.”

https://www.sciencedirect.com/science/article/abs/pii/S0014488622002655?via%3Dihub