Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities.

Philosophical Transactions of the Royal Society B: Biological Sciences: 367 (1607)

“Human tissues express cannabinoid CB(1) and CB(2) receptors that can be activated by endogenously released ‘endocannabinoids’ or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB(1)/CB(2) receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ(9)-tetrahydrocannabinol (Δ(9)-THC)) and Sativex (Δ(9)-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson’s and Huntington’s diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB(2) receptors, and/or (v) adjunctive ‘multi-targeting’.”  https://www.ncbi.nlm.nih.gov/pubmed/23108552

“Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities”  http://rstb.royalsocietypublishing.org/content/367/1607/3353.long

Therapeutic aspects of cannabis and cannabinoids

The British Journal of Psychiatry

“HISTORY OF THERAPEUTIC USE

The first formal report of cannabis as a medicine appeared in China nearly 5000 years ago when it was recommended for malaria, constipation, rheumatic pains and childbirth and, mixed with wine, as a surgical analgesic. There are subsequent records of its use throughout Asia, the Middle East, Southern Africa and South America. Accounts by Pliny, Dioscorides and Galen remained influential in European medicine for 16 centuries.”

“It was not until the 19th century that cannabis became a mainstream medicine in Britain. W. B. O’Shaughnessy, an Irish scientist and physician, observed its use in India as an analgesic, anticonvulsant, anti-spasmodic, anti-emetic and hypnotic. After toxicity experiments on goats and dogs, he gave it to patients and was impressed with its muscle-relaxant, anticonvulsant and analgesic properties, and recorded its use-fulness as an anti-emetic.”

“After these observations were published in 1842, medicinal use of cannabis expanded rapidly. It soon became available ‘over the counter’ in pharmacies and by 1854 it had found its way into the United States Dispensatory. The American market became flooded with dozens of cannabis-containing home remedies.”

“Cannabis was outlawed in 1928 by ratification of the 1925 Geneva Convention on the manufacture, sale and movement of dangerous drugs. Prescription remained possible until final prohibition under the 1971 Misuse of Drugs Act, against the advice of the Advisory Committee on Drug Dependence.”

“In the USA, medical use was effectively ruled out by the Marijuana Tax Act 1937. This ruling has been under almost constant legal challenge and many special dispensations were made between 1976 and 1992 for individuals to receive ‘compassionate reefers’. Although this loophole has been closed, a 1996 California state law permits cultivation or consumption of cannabis for medical purposes, if a doctor provides a written endorsement. Similar arrangements apply in Italy and Canberra, Australia.”

“Results and Conclusions Cannabis and some cannabinoids are effective anti-emetics and analgesics and reduce intra-ocular pressure. There is evidence of symptom relief and improved well-being in selected neurological conditions, AIDS and certain cancers. Cannabinoids may reduce anxiety and improve sleep. Anticonvulsant activity requires clarification. Other properties identified by basic research await evaluation. Standard treatments for many relevant disorders are unsatisfactory. Cannabis is safe in overdose but often produces unwanted effects, typically sedation, intoxication, clumsiness, dizziness, dry mouth, lowered blood pressure or increased heart rate. The discovery of specific receptors and natural ligands may lead to drug developments. Research is needed to optimise dose and route of administration, quantify therapeutic and adverse effects, and examine interactions.”

http://bjp.rcpsych.org/content/178/2/107.long

The therapeutic potential of novel cannabinoid receptors.

Cover image

“Cannabinoids produce a plethora of biological effects, including the modulation of neuronal activity through the activation of CB(1) receptors and of immune responses through the activation of CB(2) receptors. The selective targeting of either of these two receptor subtypes has clear therapeutic value. Recent evidence indicates that some of the cannabinomimetic effects previously thought to be produced through CB(1) and/or CB(2) receptors, be they on neuronal activity, on the vasculature tone or immune responses, still persist despite the pharmacological blockade or genetic ablation of CB(1) and/or CB(2) receptors. This suggests that additional cannabinoid and cannabinoid-like receptors exist. Here we will review this evidence in the context of their therapeutic value and discuss their true belonging to the endocannabinoid signaling system.”  http://www.ncbi.nlm.nih.gov/pubmed/19248809

“The therapeutic potential of novel cannabinoid receptors”  http://www.sciencedirect.com/science/article/pii/S0163725809000266

Cannabinoids, Endocannabinoids, and Related Analogs in Inflammation.

“This review covers reports published in the last 5 years on the anti-inflammatory activities of all classes of cannabinoids, including phytocannabinoids such as tetrahydrocannabinol and cannabidiol, synthetic analogs such as ajulemic acid and nabilone, the endogenous cannabinoids anandamide and related compounds, namely, the elmiric acids, and finally, noncannabinoid components of Cannabis that show anti-inflammatory action. It is intended to be an update on the topic of the involvement of cannabinoids in the process of inflammation. A possible mechanism for these actions is suggested involving increased production of eicosanoids that promote the resolution of inflammation. This differentiates these cannabinoids from cyclooxygenase-2 inhibitors that suppress the synthesis of eicosanoids that promote the induction of the inflammatory process.”

 

“INTRODUCTION

This review is intended to be an update on the topic of the involvement of cannabinoids in the process of inflammation. Other reviews cover certain aspects of this subject and the reader is referred to them for a discussion of earlier reports. In this review are reports published in the last 5 years on the activities of all classes of cannabinoids, including the endogenous cannabinoids such as anandamide, related compounds such as the elmiric acids (EMAs), and noncannabinoid components of Cannabis that show anti-inflammatory action. An interesting recently published example of the latter one is caryophyllene, an abundant component of Cannabis oil that shows anti-inflammatory activity and has high affinity for cannabinoid receptor 2 (CB2; 5).”

 

“Phytocannabinoids: Tetrahydrocannabinol and Cannabidiol”

 

“PLANT PREPARATIONS AND NONCANNABINOID CONSTITUENTS OF CANNABIS”

“Cannabis sativa is a complex botanical, and it is not unlikely that the therapeutic benefits of marijuana are due to some of the more than 60 cannabinoids and 200–250 noncannabinoid constituents of the plant. One noncannabinoid, the geranylated flavone cannflavin A (Fig. 5), is 30 times more potent than aspirin as an inhibitor of prostaglandin E2 . These potentially important findings have been overlooked, as most attention in marijuana research has been directed to the analgesic effects of the plant and to mechanisms of psychoactivity. A further example that this line of inquiry has remained dormant is a series of overlooked observations, which demonstrate potent anti-inflammatory actions of a crude marijuana extract and of the nonpsychoactive Cannabis constituents, CBD, cannabinol, and cannabichromene in the carrageenan paw edema model of acute inflammation in rats. Volatile oil products of the plant also have biological activity. Thus, pyrolysis products may add to the therapeutic properties of smoked marijuana. Several of the most abundant cannabinoid and noncannabinoid constituents of C. sativa are nonpsychoactive.”

“Flavonoids are ubiquitous plant phenolic compounds that consist of two aromatic rings linked by a three carbon bridge. They are attracting interest because of their antioxidant, antitumor, anti-inflammatory, and antimicrobial activities. The flavone luteolin, a constituent of C. sativa, is also found in spices and in vegetables such as celery and green pepper. When added to peripheral blood mononuclear cells in vitro, luteolin suppresses production of the inflammatory cytokines TNFα, IL-1b, and IL-6, actions that relate to a selective reduction in numbers of monocytes. Perhaps more importantly, luteolin inhibits growth of Plasmodium falciparum in vitro and protects against induction of colon cancer in mice.”

“CONCLUSIONS

Possibly the very earliest literature reference on Cannabis describes its use as an anti-inflammatory agent. The Chinese emperor Shen-nung (ca. 2000 B.C.), in a work called Pen-ts’ao Ching, noted many of the effects of Cannabis in humans. Among other properties, it was claimed that cannabis “undoes rheumatism”, suggesting possible anti-inflammatory effects. The reports described in this review of the current literature provide support for the claims made by the ancient Chinese healers. These more recent publications include relief from chronic neuropathic pain, fibromyalgia, rheumatoid arthritis, and postoperative pain. In addition, a large body of preclinical data on all classes of cannabinoids, including the endogenous examples, point to a variety of therapeutic targets for cannabinoids and important roles for the endocannabinoids in the physiology of inflammation.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2664885/

Clinical endocannabinoid deficiency (CECD): can this concept explain therapeutic benefits of cannabis in migraine, fibromyalgia, irritable bowel syndrome and other treatment-resistant conditions?

Abstract

“OBJECTIVES:

This study examines the concept of clinical endocannabinoid deficiency (CECD), and the prospect that it could underlie the pathophysiology of migraine, fibromyalgia, irritable bowel syndrome, and other functional conditions alleviated by clinical cannabis.

METHODS:

Available literature was reviewed, and literature searches pursued via the National Library of Medicine database and other resources.

RESULTS:

Migraine has numerous relationships to endocannabinoid function. Anandamide (AEA) potentiates 5-HT1A and inhibits 5-HT2A receptors supporting therapeutic efficacy in acute and preventive migraine treatment. Cannabinoids also demonstrate dopamine-blocking and anti-inflammatory effects. AEA is tonically active in the periaqueductal gray matter, a migraine generator. THC modulates glutamatergic neurotransmission via NMDA receptors. Fibromyalgia is now conceived as a central sensitization state with secondary hyperalgesia. Cannabinoids have similarly demonstrated the ability to block spinal, peripheral and gastrointestinal mechanisms that promote pain in headache, fibromyalgia, IBS and related disorders. The past and potential clinical utility of cannabis-based medicines in their treatment is discussed, as are further suggestions for experimental investigation of CECD via CSF examination and neuro-imaging.

CONCLUSION:

Migraine, fibromyalgia, IBS and related conditions display common clinical, biochemical and pathophysiological patterns that suggest an underlying clinical endocannabinoid deficiency that may be suitably treated with cannabinoid medicines.”

http://www.ncbi.nlm.nih.gov/pubmed/18404144

Unraveling the complexities of cannabinoid receptor 2 (CB2) immune regulation in health and disease

CB2 is a potent regulator of immune responses making it a prime target for the treatment of inflammatory diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/21626285

Cannabis Use in Patients with Fibromyalgia: Effect on Symptoms Relief and Health-Related Quality of Life

“We observe significant improvement of symptoms of FM in patients using cannabis… knowledge of the endocannabinoid system and the role of the stress system in the pathopysiology of FM suggest a new approach to the suffering of these patients… results together with previous evidence seem to confirm the beneficial effects of cannabinoids on FM symptoms.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3080871/?tool=pubmed