Medicinal Cannabis and the Intestinal Microbiome

pubmed logo

“Historically, the multiple uses of cannabis as a medicine, food, and for recreational purposes as a psychoactive drug span several centuries.

The various components of the plant (i.e., seeds, roots, leaves and flowers) have been utilized to alleviate symptoms of inflammation and pain (e.g., osteoarthritis, rheumatoid arthritis), mood disorders such as anxiety, and intestinal problems such as nausea, vomiting, abdominal pain and diarrhea.

It has been established that the intestinal microbiota progresses neurological, endocrine, and immunological network effects through the gut-microbiota-brain axis, serving as a bilateral communication pathway between the central and enteric nervous systems.

An expanding body of clinical evidence emphasizes that the endocannabinoid system has a fundamental connection in regulating immune responses. This is exemplified by its pivotal role in intestinal metabolic and immunity equilibrium and intestinal barrier integrity.

This neuromodulator system responds to internal and external environmental signals while also serving as a homeostatic effector system, participating in a reciprocal association with the intestinal microbiota.

We advance an exogenous cannabinoid-intestinal microbiota-endocannabinoid system axis potentiated by the intestinal microbiome and medicinal cannabinoids supporting the mechanism of action of the endocannabinoid system. An integrative medicine model of patient care is advanced that may provide patients with beneficial health outcomes when prescribed medicinal cannabis.”

https://pubmed.ncbi.nlm.nih.gov/39770543/

“Furthermore, other modes of delivery of medicinal cannabis, such as oro-buccal, sublingual and inhaled/smoked alternatives, provide cannabinoids that have rapid access to the systemic circulation, bypassing the intestinal tract.”

https://www.mdpi.com/1424-8247/17/12/1702

Hemp Extract (Extractum Cannabis) in the Treatment of Gastrointestinal Distress and Dyspepsia: Historical Insights from Barcelona, Spain

pubmed logo

“This study explores the trajectory of interest in and use of Extractum Cannabis (hemp extract, i.e., extract of Cannabis sativa L.) for the symptomatic treatment of minor gastrointestinal distress and dyspepsia in nineteenth- and early twentieth-century Barcelona (Catalonia, Spain) prior to 1939, through a review of primary sources.

The objective of this paper is to present a historical pharmaceutical and applied review of the medical use of the hemp genus (Cannabis L.) prior to its prohibition, thereby contributing to its recognition as a medicinal product.

The information provided demonstrates evidence of the medicinal use of cannabis within the historical context studied. The interactions between this legacy medical use and the contemporary body of pharmacological and toxicological knowledge (on hemp, its constituents, and the endocannabinoid system in gastrointestinal and stomach disorders) are discussed, providing new possible clinical perspectives.

Within its limitations-including the scope, limited accessibility to, and varying quality of archives-this research contributes to a more granular understanding of the historical embeddedness of psychoactive hemp medicines in northeastern Spain, suggesting that medical and pharmaceutical traditions could play a role in informing contemporary approaches to “medical marijuana”.”

https://pubmed.ncbi.nlm.nih.gov/39770428/

https://www.mdpi.com/1424-8247/17/12/1585

Relief in Gastrointestinal Symptoms with Medical Marijuana Over 1 Year

pubmed logo

“Introduction: Subjective improvement in gastrointestinal (GI) symptoms was assessed among patients using medical marijuana (MMJ).

Methods: Participants completed surveys at 0 days, 30 days, 6 months, and 12 months with questions about the severity of their GI symptoms on a scale from 1 (mild) to 3 (severe).

Results: In each survey, participants reported a significant decrease in GI symptom severity when using MMJ versus when not using MMJ (p < 0.05). The most common self-reported side effects from using MMJ were increased appetite (12-21.4%), fatigue (6-16.7%), anxiety (4-11.9%), cough (4-11.9%), headache (6-7.9%), and dry mouth (4-7.1%).

Conclusion: In patients with chronic GI symptoms, MMJ may provide persistent symptom severity improvement. Limited product availability and mild to moderate side effects are factors to consider before trialing MMJ.”

https://pubmed.ncbi.nlm.nih.gov/39015606/

“Overall, this study suggests there may be a role for MMJ to treat GI symptoms.”

https://karger.com/mca/article/7/1/80/907598/Relief-in-Gastrointestinal-Symptoms-with-Medical

Effects of Cannabinoids on Intestinal Motility, Barrier Permeability, and Therapeutic Potential in Gastrointestinal Diseases

pubmed logo

“Cannabinoids and their receptors play a significant role in the regulation of gastrointestinal (GIT) peristalsis and intestinal barrier permeability. This review critically evaluates current knowledge about the mechanisms of action and biological effects of endocannabinoids and phytocannabinoids on GIT functions and the potential therapeutic applications of these compounds.

The results of ex vivo and in vivo preclinical data indicate that cannabinoids can both inhibit and stimulate gut peristalsis, depending on various factors. Endocannabinoids affect peristalsis in a cannabinoid (CB) receptor-specific manner; however, there is also an important interaction between them and the transient receptor potential cation channel subfamily V member 1 (TRPV1) system.

Phytocannabinoids such as Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) impact gut motility mainly through the CB1 receptor. They were also found to improve intestinal barrier integrity, mainly through CB1 receptor stimulation but also via protein kinase A (PKA), mitogen-associated protein kinase (MAPK), and adenylyl cyclase signaling pathways, as well as by influencing the expression of tight junction (TJ) proteins.

The anti-inflammatory effects of cannabinoids in GIT disorders are postulated to occur by the lowering of inflammatory factors such as myeloperoxidase (MPO) activity and regulation of cytokine levels. In conclusion, there is a prospect of utilizing cannabinoids as components of therapy for GIT disorders.”

https://pubmed.ncbi.nlm.nih.gov/38928387/

“In summary, our narrative review highlights the complex interaction between cannabinoids and gastrointestinal physiology, shedding light on their potential therapeutic applications in the treatment of GIT diseases.

The findings highlight the diverse effects of cannabinoids on motility, intestinal permeability, and inflammation, which are mediated by interactions with endocannabinoids and cannabinoid receptors. It is noteworthy that cannabinoids such as THC and CBD exhibit receptor-specific effects on GIT motility via CB1 receptors, causing inhibition of muscle contractility, which may suggest targets for therapeutic interventions. Moreover, the involvement of CB1 and CB2 receptors in regulating intestinal permeability underscores the complexity of mechanisms mediated by cannabinoids in gastrointestinal health.

In addition, cannabinoids show promise as anti-inflammatory agents, offering potential benefits in the treatment of Crohn’s disease, ulcerative colitis, and IBD. Moreover, their role in modulating intestinal motility and relieving pain implicates cannabinoids as potential agents for improving quality of life in gastrointestinal disorders, especially chronic such as IBS. The results of clinical trials and data on the adverse effects of phytocannabinoids indicate that further research is needed to elucidate the exact mechanisms and optimize therapeutic strategies to realize the full potential of cannabinoids in clinical practice.”

https://www.mdpi.com/1422-0067/25/12/6682

[Phytotherapeutic recommendations in medical guidelines for the treatment of gastroenterological diseases – a systematic review]

pubmed logo

“Phytotherapeutics are gaining influence in the treatment of gastroenterological diseases. Their popularity and growing evidence of efficacy contribute to their integration into medical guidelines. A systematic screening identified recommended phytotherapeutic approaches. Based on current scientific data, some recommendations for the use of phytotherapeutic agents are given. For irritable bowel syndrome the use of peppermint oil is “strongly recommended”, especially for pain and flatulence. Other phytotherapeutics such as STW-5, Tibetan Padma Lax or warm caraway oil pads have proven effective in alleviating symptoms. It is “recommended” to integrate them into the treatment concept. For chronic constipation, 30g of fiber per day is recommended. Best data exists for plantago psyllium with moderate evidence and chicory inulin. In case of ulcerative colitis, plantago psyllium as well as the combination of myrrhchamomile flower extract, and coffee charcoal can be used as a complementary treatment in maintaining remission. There is also an “open recommendation” for curcumin for both, remission induction and maintenance. Some phytotherapeutic treatments (e.g., Artemisia absintiumBoswellia serata) show evidence of effectiveness for the treatment of Crohn’s disease, but data are not yet sufficient for recommendations. Cannabis-based medicines can be considered for abdominal pain and clinically relevant appetite loss if standard therapy is ineffective or contraindicated, but they should not be used for acute inflammation in active Crohn’s disease. Further recommendations for other gastroenterological diseases are discussed. The safety and tolerability of the phytotherapeutics were rated as predominantly “very good” to “acceptable”. Some clear recommendations for the use of phytotherapeutics to treat gastroenterological diseases show their great potential. Due to their wide range of effects, phytotherapeutics can be used very well as a complement to conventional medicines in case of complex regulatory disorders. However, further methodologically well-conducted impact studies would be helpful in order to be able to make further recommendations.”

https://pubmed.ncbi.nlm.nih.gov/38604221/

https://www.thieme-connect.de/products/ejournals/abstract/10.1055/a-2279-5045


Neuro-Gastro-Cannabinology: A Novel Paradigm for Regulating Mood and Digestive Health

pubmed logo

“The maintenance of homeostasis in the gastrointestinal (GI) tract is ensured by the presence of the endocannabinoid system (ECS), which regulates important physiological activities, such as motility, permeability, fluid secretion, immunity, and visceral pain sensation. Beside its direct effects on the GI system, the ECS in the central nervous system indirectly regulates GI functions, such as food intake and energy balance. Mounting evidence suggests that the ECS may play an important role in modulating central neurotransmission which affects GI functioning. It has also been found that the interaction between the ECS and microbiota affects brain and gut activity in a bidirectional manner, and a number of studies demonstrate that there is a strong relationship between GI dysfunctions and mood disorders. Thus, microbiota can regulate the tone of the ECS. Conversely, changes in intestinal ECS tone may influence microbiota composition. In this mini-review, we propose the concept of neuro-gastro-cannabinology as a novel and alternative paradigm for studying and treating GI disorders that affect mood, as well as mood disorders that imbalance GI physiology. This concept suggests the use of prebiotics or probiotics for improving the tone of the ECS, as well as the use of phytocannabinoids or endocannabinoid-like molecules, such as palmitoylethanolamide, to restore the normal intestinal microbiota. This approach may be effective in ameliorating the negative effects of GI dysfunctions on mood and/or the effects of mood disorders on digestive health.”

https://pubmed.ncbi.nlm.nih.gov/37920559/

“In particular, the use of cannabis-derived compounds that decrease the impact of stress, regulate circadian rhythm, and improve mood may represent a winning strategy in case of functional GI diseases.”

https://karger.com/mca/article/6/1/130/868373/Neuro-Gastro-Cannabinology-A-Novel-Paradigm-for

Pharmacohistory of Cannabis Use-A New Possibility in Future Drug Development for Gastrointestinal Diseases

pubmed logo

“Humans have employed cannabis for multiple uses including medicine, recreation, food, and fibre. The various components such as roots, flowers, seeds, and leaves have been utilized to alleviate pain, inflammation, anxiety, and gastrointestinal disorders like nausea, vomiting, diarrhoea, and inflammatory bowel diseases (IBDs). It has occupied a significant space in ethnomedicines across cultures and religions. Despite multi-dimensional uses, the global prohibition of cannabis by the USA through the introduction of the Marijuana Tax Act in 1937 led to prejudice about the perceived risks of cannabis, overshadowing its medicinal potential. Nevertheless, the discovery of tetrahydrocannabinol (THC), the primary psychoactive compound in cannabis, and the endocannabinoid system renewed scientific interest in understanding the role of cannabis in modulating different conditions, including gastrointestinal disorders. Preparations combining cannabidiol and THC have shown promise in mitigating gut symptoms through anti-inflammatory and motility-enhancing effects. This review revisits the ethnomedicinal use of cannabis in gastrointestinal diseases and emphasizes the need for further research to determine optimal dosages, formulations, and safety profiles of cannabis-based medicines. It also underscores the future potential of cannabinoid-based therapies by leveraging the role of the expanded endocannabinoid system, an endocannabinoidome, in the modulation of gastrointestinal ailments.”

https://pubmed.ncbi.nlm.nih.gov/37834122/

“Taken together, the future of cannabis and cannabinoids research for gastrointestinal disorders involves a comprehensive understanding of their mechanisms of action, multi-centred rigorous clinical trials, personalized medicine approaches, and continued exploration of formulation development and safety considerations. These efforts have the potential to yield novel therapeutic options and improve the quality of life for patients with gastrointestinal disorders.”

https://www.mdpi.com/1422-0067/24/19/14677

Cannabinoids and the GI Tract

pubmed logo

“The synthesis and degradation of endocannabinoids, location of cannabinoid (CB) receptors, and cannabinoid mechanisms of action on immune/inflammatory, neuromuscular, and sensory functions in digestive organs are well documented. CB2 mechanisms are particularly relevant in immune and sensory functions. Increasing use of cannabinoids in the USA is impacted by social determinants of health including racial discrimination which is associated with tobacco and cannabis co-use, and combined use disorders. Several conditions associated with emesis are related to cannabinoid use, including cannabinoid hyperemesis or withdrawal, cyclic vomiting syndrome, nausea and vomiting of pregnancy. Cannabinoids generally inhibit gastrointestinal motor function; yet they relieve symptoms in patients with gastroparesis and diverse nausea syndromes. Cannabinoid effects on inflammatory mechanisms have shown promise in relatively small placebo-controlled studies in reducing disease activity and abdominal pain in patients with inflammatory bowel disease (IBD). Cannabinoids have been studied in disorders of motility, pain, and disorders of gut brain interaction. The CB2 receptor agonist, cannabidiol, reduced total Gastroparesis Cardinal Symptom Index and increased ability to tolerate a meal in patients with gastroparesis appraised over 4 weeks of treatment. In contrast, predominant-pain endpoints in functional dyspepsia with normal gastric emptying were not significantly improved with cannabidiol. The CB2 agonist, olorinab, reduced abdominal pain in IBD in an open-label trial and in constipation-predominant irritable bowel syndrome in a placebo-controlled trial. Cannabinoid mechanisms alter inflammation in pancreatic and liver diseases. In conclusion, cannabinoids, particularly agents affecting CB2 mechanisms, have potential for inflammatory, gastroparesis, and pain disorders; however, the trials require replication and further understanding of risk-benefit to enhance use of cannabinoids in gastrointestinal diseases.”

https://pubmed.ncbi.nlm.nih.gov/37678488/

Cannabidiol Reduced the Severity of Gastrointestinal Symptoms of Opioid Withdrawal in Male and Female Mice

View details for Cannabis and Cannabinoid Research cover image

“Introduction: Opioid withdrawal is a powerful driver of drug-seeking behavior as relief from this aversive state through drug-taking is a strong negative reinforcer. There are currently limited treatment options available for opioid withdrawal and cannabidiol (CBD) has been identified as a potential novel therapeutic. This study explored the efficacy and dose dependency of CBD for reducing the severity of naloxone-precipitated and spontaneous oxycodone withdrawal (PW and SW, respectively) in male and female mice. 

Methods: Mice were administered saline or escalating doses of oxycodone, whereby 9, 17.8, 23.7, and 33 mg/kg oxycodone IP was administered twice daily on days 1-2, 3-4, 5-6, and 7-8, respectively. On the 9th day, a single 33 mg/kg dose of oxycodone (or saline) was administered. To precipitate withdrawal, on day 9, mice in the withdrawal conditions were administered an IP injection of 10 mg/kg naloxone 2 h after the final oxycodone injection and immediately before withdrawal testing. To elicit SW, a separate group of mice underwent withdrawal testing 24 h after their final oxycodone injection. Mice were treated with an IP injection of 0, 10, 30 or 100 mg/kg of CBD 60 min before testing. Withdrawal symptoms examined included gastrointestinal symptoms (fecal boli, diarrhea, and body weight loss), somatic symptoms (paw tremors), and negative affect (jumping). 

Results: A robust PW syndrome was observed in both male and female mice, whereas only male mice displayed an SW syndrome. CBD dose dependently reduced gastrointestinal symptoms during both PW and SW in male mice and during PW in female mice. CBD had no effect on PW- or SW-induced jumping in male mice. However, in female mice, the PW-induced increase in jumps was less pronounced in CBD-treated mice. The highest dose of CBD inhibited paw tremors during PW, but not SW, in male mice. Neither PW- nor SW-induced paw tremors were observed in female mice. 

Conclusions: The magnitude of effects on the gastrointestinal symptoms, their consistency across PW and SW, and both sexes, alongside the availability of CBD for clinical use, suggest further exploration of the potential for CBD to treat these symptoms could be justified.”

https://pubmed.ncbi.nlm.nih.gov/36577048/

https://www.liebertpub.com/doi/10.1089/can.2022.0036

The Enteric Glia and Its Modulation by the Endocannabinoid System, a New Target for Cannabinoid-Based Nutraceuticals?

molecules-logo

“The enteric nervous system (ENS) is a part of the autonomic nervous system that intrinsically innervates the gastrointestinal (GI) tract. Whereas enteric neurons have been deeply studied, the enteric glial cells (EGCs) have received less attention. However, these are immune-competent cells that contribute to the maintenance of the GI tract homeostasis through supporting epithelial integrity, providing neuroprotection, and influencing the GI motor function and sensation. The endogenous cannabinoid system (ECS) includes endogenous classical cannabinoids (anandamide, 2-arachidonoylglycerol), cannabinoid-like ligands (oleoylethanolamide (OEA) and palmitoylethanolamide (PEA)), enzymes involved in their metabolism (FAAH, MAGL, COX-2) and classical (CB1 and CB2) and non-classical (TRPV1, GPR55, PPAR) receptors. The ECS participates in many processes crucial for the proper functioning of the GI tract, in which the EGCs are involved. Thus, the modulation of the EGCs through the ECS might be beneficial to treat some dysfunctions of the GI tract. This review explores the role of EGCs and ECS on the GI tract functions and dysfunctions, and the current knowledge about how EGCs may be modulated by the ECS components, as possible new targets for cannabinoids and cannabinoid-like molecules, particularly those with potential nutraceutical use.”

https://pubmed.ncbi.nlm.nih.gov/36235308/

“Although further studies are needed to define the connections between the ECS and EGCs as a possible target to treat or reduce alterations associated with GI disorders, the use of cannabinoids may be beneficial in prevalent pathologies such as inflammatory bowel disease (IBD) and, maybe, other types of GI pathologies displaying ENS inflammation.”

https://www.mdpi.com/1420-3049/27/19/6773/htm