Plasma endocannabinoids and cannabimimetic fatty acid derivatives are altered in gastroparesis: A sex- and subtype-dependent observation

“Background: Gastroparesis (GP) is a motility disorder of the stomach presenting with upper gastrointestinal symptoms in the setting of delayed gastric emptying. Endocannabinoids are involved in the regulation of GI function including motility. However, their role in the pathophysiology of GP has not been sufficiently investigated. Our goal was to compare the circulating levels of endocannabinoids and cannabimimetic fatty acid derivatives in GP versus control subjects.

Methods: The study compared plasma concentrations of endocannabinoids and their lipoamine and 2-acyl glycerol congeners, measured by high-pressure liquid chromatography/tandem mass spectrometry (HPLC-MS-MS), in adult patients with diabetic gastroparesis (DM-GP; n = 24; n = 16 female), idiopathic gastroparesis (ID-GP; n = 19; n = 11 female), diabetic patients without GP (DM; n = 19; n = 10 female), and healthy controls (HC; n = 18; n = 10 female). Data, presented as mean ± SEM, were analyzed with ANOVA (Sidak post hoc).

Key results: Endocannabinoids anandamide (AEA: 0.5 ± 0.1 nMol/L) and 2-arachidonoyl glycerol (2-AG: 2.6 ± 0.7 nMol/L) were significantly lower in female DM-GP patients vs. DM females (AEA: 2.5 ± 0.7 nMol/L and 2-AG: 9.4 ± 3.3 nMol/L). Other monoacylglycerols including 2-palmitoyl glycerol and 2-oleoyl glycerol were also lower in female DM-GP patients compared to DM females. No changes were observed in men.

Conclusions & inferences: Endocannabinoids and other fatty acid derivatives with cannabimimetic properties are reduced in female DM-GP patients. Since GP, particularly with diabetic etiology, is more prevalent among women and since cannabinoids are antiemetic, this decrease in levels may contribute to symptom development in these subjects. Targeting the endocannabinoid system may be a future therapeutic option in DM-GP patients.”

https://pubmed.ncbi.nlm.nih.gov/32779297/

“Targeting the endocannabinoid system may be a future therapeutic option in DM-GP patients.”

https://onlinelibrary.wiley.com/doi/full/10.1111/nmo.13961

Gastroparesis with Cannabis Use: A Retrospective Study from the Nationwide Inpatient Sample

Publication Cover

“Background: With increasing utilization of cannabis in the United States (US), clinicians may encounter more cases of Gastroparesis (GP) in coming years.

Objective: The primary outcome was inpatient mortality for GP with cannabis use. Secondary outcomes included system-based complications and the burden of the disease on the US healthcare system.

Methods: From the Nationwide Inpatient Sample (NIS), we identified adult hospitalizations with a primary discharge diagnosis of GP for 2016 and 2017. Individuals ≤18 years of age were excluded. The study population was subdivided based on a secondary diagnosis of cannabis use. The outcomes included biodemographic characteristics, mortality, complications, and burden of disease on the US healthcare system.

Results: For 2016 and 2017, we identified 99,695 hospitalizations with GP. Of these hospitalizations, 8,870 had a secondary diagnosis of cannabis use while 90,825 served as controls. The prevalence of GP with cannabis use was 8.9%. For GP with cannabis use, the patients were younger (38.5 vs 48.1 years, p < 0.001) with a Black predominance (Table 1) and lower proportion of females (52.3 vs 68.3%, p < 0.001) compared to the non-cannabis use cohort. Additionally, the cannabis use cohort had higher percentage of patients with co-morbidities like hypertension, diabetes mellitus and a history of smoking. The inpatient mortality for GP with cannabis use was noted to be 0.27%. Furthermore, we noted shorter mean length of stay (LOS) (3.4 vs 4.4 days, aMD: -0.7, 95%CI: -0.9 – [-0.5], p < 0.001), lower mean total hospital charge (THC) ($30,400 vs $38,100, aMD: -5100, 95%CI: -6900 – [-3200], p < 0.001), and lower rates of sepsis (0.11 vs 0.60%, aOR: 0.22, 95% CI: 0.05-0.91, p = 0.036) for GP hospitalizations with cannabis use compared to the non-cannabis use cohort.

Conclusion: Inpatient mortality for GP hospitalizations with cannabis use was 0.27%. Additionally, these patients had shorter LOS, lower THC, and lower sepsis rates.”

https://pubmed.ncbi.nlm.nih.gov/34096455/

https://www.tandfonline.com/doi/abs/10.1080/00325481.2021.1940219?journalCode=ipgm20

Trends and Socioeconomic Health Outcomes of Cannabis Use Among Patients With Gastroparesis: A United States Nationwide Inpatient Sample Analysis

Current Issue Cover Image

“Background: Although cannabis may worsen nausea and vomiting for patients with gastroparesis, it may also be an effective treatment for gastroparesis-related abdominal pain. Given conflicting data and a lack of current epidemiological evidence, we aimed to investigate the association of cannabis use on relevant clinical outcomes among hospitalized patients with gastroparesis.

Materials and methods: Patients with a diagnosis of gastroparesis were reviewed from the National Inpatient Sample (NIS) database between 2008 and 2014. Gastroparesis was identified by International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes with patients classified based on a diagnosis of cannabis use disorder. Demographics, comorbidities, socioeconomic status, and outcomes were compared between cohorts using χ2 and analysis of variance. Logistic regression was then performed and annual trends also evaluated.

Results: A total of 1,473,363 patients with gastroparesis were analyzed [n=33,085 (2.25%) of patients with concomitant cannabis use disorder]. Patients with gastroparesis and cannabis use disorder were more likely to be younger and male gender compared with nonusers (36.7±18.8 vs. 51.9±16.8; P<0.001 and 52.9% vs. 33.5%; P<0.001, respectively). Race/ethnicity was different between groups (P<0.001). Cannabis users had a lower median household income and were more likely to have Medicaid payor status (all P<0.001). Controlling for confounders, length of stay, and mortality were significantly decreased for patients with gastroparesis and cannabis use (all P<0.001).

Conclusion: While patients with gastroparesis and cannabis use disorder were younger, with a lower socioeconomic status, and disproportionately affected by psychiatric diagnoses, these patients had better hospitalization outcomes, including decreased length of stay and improved in-hospital mortality.”

https://pubmed.ncbi.nlm.nih.gov/33780213/

https://journals.lww.com/jcge/Abstract/2022/04000/Trends_and_Socioeconomic_Health_Outcomes_of.7.aspx

“Cannabis Use Disorder in Patients With Gastroparesis Associated With Better Hospitalization Outcomes”

https://www.gastroenterologyadvisor.com/stomach-disorders/cannabis-use-disorder-in-patients-with-gastroparesis-associated-with-better-hospitalization-outcomes/

Differential Effects of D9 Tetrahydrocannabinol (THC)- and Cannabidiol (CBD)-Based Cannabinoid Treatments on Macrophage Immune Function In Vitro and on Gastrointestinal Inflammation in a Murine Model

biomedicines-logo

“Phytocannabinoids possess a wide range of immune regulatory properties, mediated by the endocannabinoid system.

Monocyte/macrophage innate immune cells express endocannabinoid receptors. Dysregulation of macrophage function is involved in the pathogenesis of different inflammatory diseases, including inflammatory bowel disease.

In our research, we aimed to evaluate the effects of the phytocannabinoids D9 tetrahydrocannabinol (THC) and cannabidiol (CBD) on macrophage activation.

Macrophages from young and aged C57BL/6 mice were activated in vitro in the presence of pure cannabinoids or cannabis extracts. The phenotype of the cells, nitric oxide (NO•) secretion, and cytokine secretion were examined. In addition, these treatments were administered to murine colitis model. The clinical statuses of mice, levels of colon infiltrating macrophages, and inflammatory cytokines in the blood, were evaluated.

We demonstrated inhibition of macrophage NO• and cytokine secretion and significant effects on expression of cell surface molecules. In the murine model, clinical scores were improved and macrophage colon infiltration reduced following treatment. We identified higher activity of cannabis extracts as compared with pure cannabinoids. Each treatment had a unique effect on cytokine composition.

Overall, our results establish that the effects of cannabinoid treatments differ. A better understanding of the reciprocal relationship between cannabinoids and immunity is essential to design targeted treatment strategies.”

https://pubmed.ncbi.nlm.nih.gov/35892693/

“Overall, our results indicate both similarities and differences between the impact of CBD- and THC-based drugs. Although all the tested treatments had an anti-inflammatory effect, their specific effects (for example, on phenotype of the cells and on cytokine production) differed. These differences may influence the clinical outcome of the treatment. We were surprised to find very similar anti-inflammatory results for the two cannabis extracts, which had diverse content of THC and CBD. This could suggest that THC/CBD content may not be the best indicator for anti-inflammatory properties of a cannabis-based drug. These results highlight the need to expand the research on the interplay between cannabinoids and other phytochemicals in the cannabis extracts. A better understanding of the effects of each molecule and the synergism between these molecules on the immune response will assist physicians to provide the best possible individually targeted treatment for their patients and will allow the design of new treatments.”

https://www.mdpi.com/2227-9059/10/8/1793/htm

Involvement of the cannabinoid system in chronic inflammatory intestinal diseases: opportunities for new therapies

Intestinal Research

“The components of the endogenous cannabinoid system are widely expressed in the gastrointestinal tract contributing to local homeostasis. In general, cannabinoids exert inhibitory actions in the gastrointestinal tract, inducing anti-inflammatory, antiemetic, antisecretory, and antiproliferative effects. Therefore, cannabinoids are interesting pharmacological compounds for the treatment of several acute intestinal disorders, such as dysmotility, emesis, and abdominal pain. Likewise, the role of cannabinoids in the treatment of chronic intestinal diseases, such as irritable bowel syndrome and inflammatory bowel disease, is also under investigation. Patients with chronic intestinal inflammatory diseases present impaired quality of life, and mental health issues are commonly associated with long-term chronic diseases. The complex pathophysiology of these diseases contributes to difficulties in diagnosis and, therefore, in the choice of a satisfactory treatment. Thus, this article reviews the involvement of the cannabinoid system in chronic inflammatory diseases that affect the gastrointestinal tract and highlights possible therapeutic approaches related to the use of cannabinoids.”

https://pubmed.ncbi.nlm.nih.gov/35645322/

https://www.irjournal.org/journal/view.php?doi=10.5217/ir.2021.00160

Protective effect of cannabinoids on gastric mucosal lesions induced by water immersion restrain stress in rats

“Objectives: This study aimed to determine the impact of cannabinoid agonists and antagonists on the mucosal lesion progress in the stomach induced by water-immersion restraint stress (WIRS).

Materials and methods: Rats subjected to WIRS for 4 hr were treated with Dimethyl sulfoxide (DMSO), CBR1 agonist (NADA, 1 mg/kg), CBR1 antagonist (Rimonabant, 1 mg/kg), CBR2 agonist (GW405833 1 mg/kg) or CBR2 antagonist (AM630, 1 mg/kg SC) 30 min before WIRS. Microscopic lesions, oxidative stress, inflammatory cytokines biomarkers, and (Myeloperoxidase) MPO in gastric tissues were determined.

Results: Results indicated development of severe gastric lesions with a substantial increase in the contents of (nitric oxide) NO, (malondialdehyde) MDA, (interleukin-1 beta) IL-1β, MPO, (tumor necrosis factor-alpha) TNF-α, and a significant fall in the content of GSH and the activity of PON-1 after WIRS.

Conclusion: Treatment with NADA and AM630 protected gastric tissues against ulcers as demonstrated by a decrease in the contents of MDA, TNF-α, MPO, and IL-1β along with an increase in the content of PON-1 activity and GSH in the stomach tissues. On the other hand, treatment with SR141716A or GW405833 showed no protective effects on ulcers development. It seems that cannabinoids exert their antioxidant potential and anti-inflammatory effects against WIRS-induced gastric ulcers by activation of CB1R.”

https://pubmed.ncbi.nlm.nih.gov/35083004/

The Endocannabinoid System: A Potential Target for the Treatment of Various Diseases

ijms-logo“The Endocannabinoid System (ECS) is primarily responsible for maintaining homeostasis, a balance in internal environment (temperature, mood, and immune system) and energy input and output in living, biological systems.

In addition to regulating physiological processes, the ECS directly influences anxiety, feeding behaviour/appetite, emotional behaviour, depression, nervous functions, neurogenesis, neuroprotection, reward, cognition, learning, memory, pain sensation, fertility, pregnancy, and pre-and post-natal development.

The ECS is also involved in several pathophysiological diseases such as cancer, cardiovascular diseases, and neurodegenerative diseases. In recent years, genetic and pharmacological manipulation of the ECS has gained significant interest in medicine, research, and drug discovery and development.

The distribution of the components of the ECS system throughout the body, and the physiological/pathophysiological role of the ECS-signalling pathways in many diseases, all offer promising opportunities for the development of novel cannabinergic, cannabimimetic, and cannabinoid-based therapeutic drugs that genetically or pharmacologically modulate the ECS via inhibition of metabolic pathways and/or agonism or antagonism of the receptors of the ECS. This modulation results in the differential expression/activity of the components of the ECS that may be beneficial in the treatment of a number of diseases.

This manuscript in-depth review will investigate the potential of the ECS in the treatment of various diseases, and to put forth the suggestion that many of these secondary metabolites of Cannabis sativa L. (hereafter referred to as “C. sativa L.” or “medical cannabis”), may also have potential as lead compounds in the development of cannabinoid-based pharmaceuticals for a variety of diseases.”

https://pubmed.ncbi.nlm.nih.gov/34502379/

https://www.mdpi.com/1422-0067/22/17/9472

 

“Cannabis sativa L. as a Natural Drug Meeting the Criteria of a Multitarget Approach to Treatment”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7830475/

Endocannabinoids Inhibit the Induction of Virulence in Enteric Pathogens

Cell | Publons
“Endocannabinoids are host-derived lipid hormones that fundamentally impact gastrointestinal (GI) biology. The use of cannabis and other exocannabinoids as anecdotal treatments for various GI disorders inspired the search for mechanisms by which these compounds mediate their effects, which led to the discovery of the mammalian endocannabinoid system. Dysregulated endocannabinoid signaling was linked to inflammation and the gut microbiota. However, the effects of endocannabinoids on host susceptibility to infection has not been explored. Here, we show that mice with elevated levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG) are protected from enteric infection by Enterobacteriaceae pathogens. 2-AG directly modulates pathogen function by inhibiting virulence programs essential for successful infection. Furthermore, 2-AG antagonizes the bacterial receptor QseC, a histidine kinase encoded within the core Enterobacteriaceae genome that promotes the activation of pathogen-associated type three secretion systems. Taken together, our findings establish that endocannabinoids are directly sensed by bacteria and can modulate bacterial function.”
Figure thumbnail fx1

“Fighting intestinal infections with the body’s own endocannabinoids. By harnessing the power of natural compounds produced in the body and in plants, we may eventually treat infections in a whole new way.”  https://www.sciencedaily.com/releases/2020/10/201007123119.htm

“Study may explain why cannabis plant can reduce symptoms of various bowel conditions” https://www.news-medical.net/news/20201007/Study-could-help-explain-why-cannabis-plant-can-reduce-symptoms-of-various-bowel-conditions.aspx

Cannabis and the Gastrointestinal Tract

“Cannabis has been used for its medicinal purposes since ancient times. Its consumption leads to the activation of Cannabis receptors CB1 and CB2 that, through specific mechanisms can lead to modulation and progression of inflammation or repair. The novel findings are linked to the medical use of Cannabis in gastrointestinal (GI) system.

Purpose: The objective of the present paper is to elucidate the role of Cannabis consumption in GI system. An additional aim is to review the information on the function of Cannabis in non-alcoholic fatty liver disease (NAFLD).

Methods and results: This review summarizes the recent findings on the role of cannabinoid receptors, their synthetic or natural ligands, as well as their metabolizing enzymes in normal GI function and its disorders, including irritable bowel syndrome (IBS), inflammatory bowel disease (IBD) and possible adverse events. The synergism or antagonism between Cannabis’ active ingredients and the “entourage” plays a role in the efficacy of various strains. Some elements of Cannabis may alter disease severity as over-activation of Cannabis receptors CB1 and CB2 can lead to changes of the commensal gut flora. The endocannabinoid system (ECS) contributes to gut homeostasis. The ability of ECS to modulate inflammatory responses demonstrates the capacity of ECS to preserve gastrointestinal (GI) function. Alterations of the ECS may predispose patients to pathologic disorders, including IBD. Clinical studies in IBD demonstrate that subjects benefit from Cannabis consumption as seen through a reduction of the IBD-inflammation, as well as through a decreased need for other medication. NAFLD is characterized by fat accumulation in the liver. The occurrence of inflammation in NAFLD leads to non-alcoholic-steatohepatitis (NASH). The use of Cannabis might reduce liver inflammation.

Conclusions: With limited evidence of efficacy and safety of Cannabis in IBD, IBS, and NAFLD, randomized controlled studies are required to examine its therapeutic efficacy.”

https://pubmed.ncbi.nlm.nih.gov/32762830/

https://journals.library.ualberta.ca/jpps/index.php/JPPS/article/view/31242

Investigation of cannabidiol gastro retentive tablets based on regional absorption of cannabinoids in rats.

European Journal of Pharmaceutics and Biopharmaceutics“The cannabis plant has been widely researched for many therapeutic indications and found to be effective in many chronic conditions such as epilepsy, neuropathic or chronic pain and more. However, biased opinion against compounds of the plant, regulatory as well as compounding challenges have led to very few approved medicinal products. Those formulations which are approved are dosed several times a day, creating an unmet need for controlled release (CR) formulations of cannabinoids. Conventional CR formulations rely on prolonged absorption including the colon. The purpose of this work is to investigate regional absorption of major cannabinoids THC and CBD from the colon and develop a suitable CR formulation. As hypothesized by researchers, THC and CBD have poor absorption from the colon compared to small intestine, suggesting that these compounds have a narrow absorption window. The suggested formulation examined in-vitro was a floating gastro retentive tablet based on egg albumin matrix, gas generating agents and surfactants. In-vivo investigation of CBD containing formulation in the freely moving rat model proved a prolonged absorption phase with a substantial increase in bioavailability compared to CBD solution. The findings of this paper answer a crucial question regarding potential application of CR dosage forms for cannabinoids and shed light on the regional intestinal absorption of these compounds. Ultimately, these results cement the way for future development of cannabinoid gastro retentive dosage forms.”

https://www.ncbi.nlm.nih.gov/pubmed/32422168

https://www.sciencedirect.com/science/article/abs/pii/S0939641120301375?via%3Dihub