The Endocannabinoid System and Its Role in Regulating the Intrinsic Neural Circuitry of the Gastrointestinal Tract.

“Endocannabinoids are important neuromodulators in the central nervous system.

They regulate central transmission through pre- and postsynaptic actions on neurons and indirectly through effects on glial cells.

Cannabinoids (CBs) also regulate neurotransmission in the enteric nervous system (ENS) of the gastrointestinal (GI) tract.

The ENS consists of intrinsic primary afferent neurons, interneurons, and motor neurons arranged in two ganglionated plexuses which control all the functions of the gut.

Increasing evidence suggests that endocannabinoids are potent neuromodulators in the ENS.

In this review, we will highlight key observations on the localization of CB receptors and molecules involved in the synthesis and degradation of endocannabinoids in the ENS.

We will discuss endocannabinoid signaling mechanisms, endocannabinoid tone and concepts of CB receptor metaplasticity in the ENS. We will also touch on some examples of enteric neural signaling in relation neuromuscular, secretomotor, and enteroendocrine transmission in the ENS. Finally, we will briefly discuss some key future directions.”

Prevention of Diet-Induced Obesity Effects on Body Weight and Gut Microbiota in Mice Treated Chronically with Δ9-Tetrahydrocannabinol.

“Acute administration of cannabinoid CB1 receptor agonists, or the ingestion of cannabis, induces short-term hyperphagia. However, the incidence of obesity is lower in frequent cannabis users compared to non-users.

Gut microbiota affects host metabolism and altered microbial profiles are observed in obese states. Gut microbiota modifies adipogenesis through actions on the endocannabinoid system. This study investigated the effect of chronic THC administration on body weight and gut microbiota in diet-induced obese (DIO) and lean mice.

THC reduced weight gain, fat mass gain and energy intake in DIO but not lean mice. DIO-induced changes in select gut microbiota were prevented in mice chronically administered THC.

Chronic THC treatment reduced energy intake and prevented high fat diet-induced increases in body weight and adiposity; effects that were unlikely to be a result of sedation or altered gastrointestinal transit. Changes in gut microbiota potentially contribute to chronic THC-induced actions on body weight in obesity.”

http://www.ncbi.nlm.nih.gov/pubmed/26633823

“Prevention of Diet-Induced Obesity Effects on Body Weight and Gut Microbiota in Mice Treated Chronically with Δ9-Tetrahydrocannabinol… To follow up on our hypothesis that exposure to THC may produce weight loss, in the current study we investigated whether chronic THC inhibits weight gain in lean and diet-induced obese (DIO) mice… We present data showing that chronic administration of the CB1/CB2 receptor partial agonist, THC, prevents weight gain in DIO mice. Furthermore, we show evidence that DIO-mediated modifications in gut microbiota are prevented in chronically THC treated mice… In conclusion, we present data showing the CB1/CB2 receptor partial agonist THC, induces hypophagia and prevents weight gain in obesity and suggest these actions may be mediated in part by modifications of the gut microbiota.”  http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0144270

Endocannabinoids and the Digestive Tract and Bladder in Health and Disease.

“Components of the so-called endocannabinoid system, i.e., cannabinoid receptors, endocannabinoids, as well as enzymes involved in endocannabinoid synthesis and degradation, have been identified both in the gastrointestinal and in the urinary tract.

Evidence suggests that the endocannabinoid system is implicated in many gastrointestinal and urinary physiological and pathophysiological processes, including epithelial cell growth, inflammation, analgesia, and motor function.

A pharmacological modulation of the endocannabinoid system might be beneficial for widespread diseases such as gastrointestinal reflux disease, irritable bowel syndrome, inflammatory bowel disease, colon cancer, cystitis, and hyperactive bladder.

Drugs that inhibit endocannabinoid degradation and raise the level of endocannabinoids, non-psychotropic cannabinoids (notably cannabidiol), and palmitoylethanolamide, an acylethanolamide co-released with the endocannabinoid anandamide, are promising candidates for gastrointestinal and urinary diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/26408170

In vitro and non-invasive in vivo effects of the cannabinoid-1 receptor agonist AM841 on gastrointestinal motor function in the rat.

“Cannabinoids have been traditionally used for the treatment of gastrointestinal (GI) symptoms, but the associated central effects, through cannabinoid-1 receptors (CB1R), constitute an important drawback. Our aims were to characterize the effects of the recently developed highly potent long-acting megagonist AM841 on GI motor function and to determine its central effects in rats…

The CB1R megagonist AM841 may potently depress GI motor function in the absence of central effects. This effect may be mediated peripherally and may be useful in the treatment of GI motility disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/26387676

[Cannabis – therapy for the future?]

“Despite all the progress achieved in the treatment of chronic gastrointestinal diseases, in some patients the treatment does not reach long-term optimum effectiveness. Therefore a number of patients have turned to complementary and alternative medicine (CAM).

Of the different types of CAM patients with GIT diseases tend to prefer in particular homeopathy, acupuncture and not least phytotherapy, where therapeutic use of cannabis may also be included.

The pathophysiological basis of therapeutic effect of curative cannabis has not been fully clarified so far.

Many scientists in many fields of medicine and pharmacology have been engaged in the study of effects of cannabinoids on the body since the beginning of the 20th century with the interest significantly increasing in the 1980s.

The discovery of CB receptors (1988) and endogenous molecules which activate these receptors (1992) led to the discovery of the endocannabinoid system.

Pharmacological modulation of the endogenous cannabinoid system offers new therapeutic possibilities of treatment of many illnesses and symptoms including the GIT disorders, including of nausea, vomiting, cachexia, IBS, Crohns disease and some other disorders.

Cannabinoids are attractive due to their therapeutic potential – they affect a lot of symptoms with minimum side effects.

Experience of patients with GIT disorders show that the use of cannabis is effective and helps in cases where the standard therapy fails.”

http://www.ncbi.nlm.nih.gov/pubmed/26375695

Cannabinoids Regulate Intestinal Motor Function and Electrophysiological Activity of Myocytes in Rodents.

“This study aims to investigate the effects of cannabinoid (CB)-1 and CB2 receptor ligands on intestinal motor function and muscular electrophysiological activity in rodent gastrointestinal (GI) tract…

This is one of the first reports on neuronal regulation of intestinal motility through CB-dependent pathways with potential application in the treatment of inflammatory and functional GI disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/26254701

Role of endogenous cannabinoid system in the gut.

“The plant Cannabis has been used in clinic for centuries, and has been known to be beneficial in a variety of gastrointestinal diseases, such as emesis, diarrhea, inflammatory bowel disease and intestinal pain.

In this text, we’ll review the components of the endogenous cannabinoid system as well as its role in the regulation of gastrointestinal activities, thus providing relative information for further study.

Moreover, modulation of the endogenous cannabinoid system in gastrointestinal tract may provide a useful therapeutic target for gastrointestinal disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/23963077

http://www.thctotalhealthcare.com/category/gastrointestinal-disorders/

The role of cannabinoids in regulation of nausea and vomiting, and visceral pain.

“Marijuana derived from the plant Cannabis sativa has been used for the treatment of many gastrointestinal (GI) disorders, including anorexia, emesis, abdominal pain, diarrhea, and others.

Several cannabinoid receptors, which include the cannabinoid receptor 1 (CB1), CB2, and possibly GPR55, have been identified throughout the GI tract.

These receptors may play a role in the regulation of food intake, nausea and emesis, gastric secretion and gastroprotection, GI motility, ion transport, visceral sensation, intestinal inflammation, and cell proliferation in the gut.

…the regulation of nausea and vomiting by cannabinoids and the endocannabinoid system has shed new knowledge in this field.

Novel drug targets such as FAAH and monoacylglycerol lipase (MAGL) inhibitors appear to be promising in animal models, but more studies are necessary to prove their efficiency.

The promise of emerging drugs that are more selective and peripherally acting suggest that, in the near future, cannabinoids will play a major role in managing an array of GI diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/25715910

Emerging role of cannabinoids in gastrointestinal and liver diseases: basic and clinical aspects.

“A multitude of physiological effects and putative pathophysiological roles have been proposed for the endogenous cannabinoid system in the gastrointestinal tract, liver and pancreas.

These range from effects on epithelial growth and regeneration, immune function, motor function, appetite control, fibrogenesis and secretion.

Cannabinoids have the potential for therapeutic application in gut and liver diseases.

Two exciting therapeutic applications in the area of reversing hepatic fibrosis as well as antineoplastic effects may have a significant impact in these diseases.

This review critically appraises the experimental and clinical evidence supporting the clinical application of cannabinoid receptor-based drugs in gastrointestinal, liver and pancreatic diseases.

Application of modern pharmacological principles will most probably expand the selective modulation of the cannabinoid system peripherally in humans.

We anticipate that, in addition to the approval in several countries of the CB(1) antagonist, rimonabant, for the treatment of obesity and associated metabolic dysfunctions, other cannabinoid modulators are likely to have an impact on human disease in the future, including hepatic fibrosis and neoplasia.”

http://www.ncbi.nlm.nih.gov/pubmed/18397936

http://www.thctotalhealthcare.com/category/liver-disease/