Cannabinoid-mediated retinal rescue correlates with improved circadian parameters in retinal dystrophic rats.

 Experimental Eye Research“Ocular pathologies and blindness have been linked to circadian disorders. In previous studies, our group has demonstrated that retinitis pigmentosa is associated with degenerative changes in the melanopsin system and weaker circadian patterns.

We have also shown that cannabinoids preserve retinal structure and function in dystrophic P23H rats.

This study is consequently aimed at examining whether the morphologic and functional rescue of retinal degeneration by cannabinoids is associated with amelioration of circadian parameters.

The synthetic cannabinoid HU210 (100 μg/kg, i.p.) or vehicle were administered to transgenic P23H rats three times per week, from postnatal day 24-90. Sprague-Dawley rats were used as a healthy control group. Locomotor activity and scotopic electroretinograms were recorded, and the retinal structure was analyzed at the end of the experiment. The ERG a- and b-wave amplitudes and photoreceptor cell number were more deteriorated in vehicle-administered P23H rats as compared to P23H rats treated with HU210. In cannabinoid-administered P23H rats, the locomotor activity circadian rhythms showed less disturbance than that observed in vehicle-administered P23H rats, the latter showing lower values for mesor, amplitude, acrophase, percentage of variance and non-parametric variables. A positive linear correlation was found between retinal values and circadian parameters of locomotor activity from P23H rats.

This study thus provides evidence of a positive correlation between cannabinoid-mediated rescue of retinal structure and function and improvement of circadian rhythmicity.”

https://www.ncbi.nlm.nih.gov/pubmed/30605663

https://www.sciencedirect.com/science/article/pii/S0014483518306511?via%3Dihub

Δ9-Tetrahydrocannabinol and Cannabidiol Differentially Regulate Intraocular Pressure.

“It has been known for nearly 50 years that cannabis and the psychoactive constituent Δ9-tetrahydrocannabinol (THC) reduce intraocular pressure (IOP).

Elevated IOP remains the chief hallmark and therapeutic target for glaucoma, a major cause of blindness.

THC likely acts via one of the known cannabinoid-related receptors (CB1, CB2, GPR18, GPR119, GPR55) but this has never been determined explicitly.

Cannabidiol (CBD) is a second major constituent of cannabis that has been found to be without effect on IOP in most studies.

RESULTS:

We now report that a single topical application of THC lowered IOP substantially (∼28%) for 8 hours in male mice. This effect is due to combined activation of CB1 and GPR18 receptors each of which has been shown to lower ocular pressure when activated. We also found that the effect was sex-dependent, being stronger in male mice, and that mRNA levels of CB1 and GPR18 were higher in males. Far from inactive, CBD was found to have two opposing effects on ocular pressure, one of which involved antagonism of tonic signaling.

CBD prevents THC from lowering ocular pressure.

CONCLUSIONS:

We conclude that THC lowers IOP by activating two receptors-CB1 and GPR18-but in a sex-dependent manner. CBD, contrary to expectation, has two opposing effects on IOP and can interfere with the effects of THC.”

https://www.ncbi.nlm.nih.gov/pubmed/30550613

https://iovs.arvojournals.org/article.aspx?articleid=2718702

A Brief Background on Cannabis: From Plant to Medical Indications.

 Ingenta Connect

“Cannabis has been used as a medicinal plant for thousands of years.

As a result of centuries of breeding and selection, there are now over 700 varieties of cannabis that contain hundreds of compounds, including cannabinoids and terpenes.

Cannabinoids are fatty compounds that are the main biological active constituents of cannabis. Terpenes are volatile compounds that occur in many plants and have distinct odors.

Cannabinoids exert their effect on the body by binding to receptors, specifically cannabinoid receptors types 1 and 2. These receptors, together with endogenous cannabinoids and the systems for synthesis, transport, and degradation, are called the Endocannabinoid System.

The two most prevalent and commonly known cannabinoids in the cannabis plant are delta-9-tetrahydrocannabinol (THC) and cannabidiol.

The speed, strength, and type of effects of cannabis vary based on the route of administration. THC is rapidly distributed through the body to fatty tissues like the brain and is metabolized by the cytochrome P450 system to 11-hydroxy-THC, which is also psychoactive.

Cannabis and cannabinoids have been indicated for several medical conditions.

There is evidence of efficacy in the symptomatic treatment of nausea and vomiting, pain, insomnia, post-traumatic stress disorder, anxiety, loss of appetite, Tourette’s syndrome, and epilepsy. Cannabis has also been associated with treatment for glaucoma, Huntington’s Disease, Parkinson’s Disease, and dystonia, but there is not good evidence to support its efficacy. Side effects of cannabis include psychosis and anxiety, which can be severe.

Here, we provided a summary of the history of cannabis, its pharmacology, and its medical uses.”

https://www.ncbi.nlm.nih.gov/pubmed/30139415

Revisiting cannabinoid receptor 2 expression and function in murine retina.

 Neuropharmacology

“The cannabinoid receptor CB2 plays a significant role in the regulation of immune function whereas neuronal expression remains a subject of contention. Multiple studies have described CB2 in retina and a recent study showed that CB2 deletion altered retinal visual processing. We revisited CB2 expression using immunohistochemistry and a recently developed CB2-eGFP reporter mouse. We examined the consequence of acute vs. prolonged CB2 deactivation on the electroretinogram (ERG) responses. We also examined lipidomics in CB2 knockout mice and potential changes in microglia using Scholl analysis. Consistent with a published report, in CB2 receptor knockout mice see an increased ERG scotopic a-wave, as well as stronger responses in dark adapted cone-driven ON bipolar cells and, to a lesser extent cone-driven ON bipolar cells early in light adaptation. Significantly, however, acute block with CB2 antagonist, AM630, did not mimic the results observed in the CB2 knockout mice whereas chronic (7 days) block did. Immunohistochemical studies show no CB2 in retina under non-pathological conditions, even with published antibodies. Retinal CB2-eGFP reporter signal is minimal under baseline conditions but upregulated by intraocular injection of either LPS or carrageenan. CB2 knockout mice see modest declines in a broad spectrum of cannabinoid-related lipids. The numbers and morphology of microglia were unaltered. In summary minimal CB2 expression is seen in healthy retina. CB2 appears to be upregulated under pathological conditions. Previously reported functional consequences of CB2 deletion are an adaptive response to prolonged blockade of these receptors. CB2 therefore impacts retinal signaling but perhaps in an indirect, potentially extra-ocular fashion.”

https://www.ncbi.nlm.nih.gov/pubmed/30121200

https://www.sciencedirect.com/science/article/pii/S0028390818304775?via%3Dihub

Therapeutic applications of cannabinoids.

Chemico-Biological Interactions

“The psychoactive properties of cannabinoids are well known and there has been a continuous controversy regarding the usage of these compounds for therapeutic purposes all over the world. Their use for medical and research purposes are restricted in various countries. However, their utility as medications should not be overshadowed by their negative physiological activities.

This review article is focused on the therapeutic potential and applications of phytocannabinoids and endocannabinoids. It highlights their mode of action, overall effects on physiology, various in vitro and in vivo studies that have been done so far and the extent to which these compounds can be useful in different disease conditions such as cancer, Alzheimer’s disease, multiple sclerosis, pain, inflammation, glaucoma and many others.

Thus, this work is an attempt to make the readers understand the positive implications of these compounds and indicates the significant developments that can occur upon utilizing cannabinoids as therapeutic agents.”  https://www.ncbi.nlm.nih.gov/pubmed/30040916

“Cannabinoids can be used as therapeutic agents.”   https://www.sciencedirect.com/science/article/pii/S0009279718307373?via%3Dihub

[Should ophtalmologists recommend medical cannabis to patients with glaucoma?]

 Image result for ugeskr laeger

“Cannabis has been widely used for various medical purposes since before year 2000 BC. Its effects are mediated by cannabinoids and stimulation of mainly G-protein coupled cannabinoid receptors.

In 1971, subjects who smoked marihuana, showed a decrease in the intraocular pressure.

Later investigations additionally revealed a neuroprotective effect of both ∆-9-tetrahydrocannabinol and cannabidiol (CBD).

Furthermore, CBD was found to promote neurogenesis. The aim of this review is to provide an overview of the potential use of cannabinoids in the treatment of glaucoma.”

https://www.ncbi.nlm.nih.gov/pubmed/30020072

Controlled-Deactivation CB1 Receptor Ligands as a Novel Strategy to Lower Intraocular Pressure.

 pharmaceuticals-logo

“Nearly half a century has passed since the demonstration that cannabis and its chief psychoactive component Δ⁸-THC lowers intraocular pressure (IOP).

Elevated IOP remains the chief hallmark and therapeutic target for glaucoma, a condition that places millions at risk of blindness. It is likely that Δ⁸-THC exerts much of its IOP-lowering effects via the activation of CB1 cannabinoid receptors.

However, the initial promise of CB1 as a target for treating glaucoma has not thus far translated into a credible therapeutic strategy. We have recently shown that blocking monoacylglycerol lipase (MAGL), an enzyme that breaks the endocannabinoid 2-arachidonoyl glycerol (2-AG), substantially lowers IOP.

Another strategy is to develop cannabinoid CB1 receptor agonists that are optimized for topical application to the eye. Recently we have reported on a controlled-deactivation approach where the “soft” drug concept of enzymatic deactivation was combined with a “depot effect” that is commonly observed with Δ⁸-THC and other lipophilic cannabinoids.

This approach allowed us to develop novel cannabinoids with a predictable duration of action and is particularly attractive for the design of CB1 activators for ophthalmic use with limited or no psychoactive effects.

We have tested a novel class of compounds using a combination of electrophysiology in autaptic hippocampal neurons, a well-characterized model of endogenous cannabinoid signaling, and measurements of IOP in a mouse model.

We now report that AM7410 is a reasonably potent and efficacious agonist at CB1 in neurons and that it substantially (30%) lowers IOP for as long as 5 h after a single topical treatment. This effect is absent in CB1 knockout mice.

Our results indicate that the direct targeting of CB1 receptors with controlled-deactivation ligands is a viable approach to lower IOP in a murine model and merits further study in other model systems.”

https://www.ncbi.nlm.nih.gov/pubmed/29786643

http://www.mdpi.com/1424-8247/11/2/50

A stimulus-responsive, in situ-forming, nanoparticle-laden hydrogel for ocular drug delivery

Drug Delivery and Translational Research

“Most medications targeting optic neuropathies are administered as eye drops. However, their corneal penetration efficiencies are typically < 5%.

There is a clear, unmet need for novel transcorneal drug delivery vehicles. To this end, we have developed a stimulus-responsive, in situ-forming, nanoparticle-laden hydrogel for controlled release of poorly bioavailable drugs into the aqueous humor of the eye.

We subsequently tested the efficacy of our formulation in whole-eye experiments by loading the nanoparticles with cannabigerolic acid (CBGA). Our formulation exhibits over a 300% increase in transcorneal penetration over control formulations.

We have successfully developed a stimulus-responsive, in situ-forming, nanoparticle-laden hydrogel for controlled release of poorly bioavailable drugs such as cannabinoids into the aqueous humor of the eye.

Our therapeutic strategy leverages the proven potential of cannabinoids to confer neuroprotection to ganglion cells.

This work paves the way for the introduction of novel products targeting ocular diseases to the market.”

https://link.springer.com/article/10.1007/s13346-018-0504-x

The Cannabinoids Δ8THC, CBD, and HU-308 Act via Distinct Receptors to Reduce Corneal Pain and Inflammation

Mary Ann Liebert, Inc. publishers

“Corneal injury can result in dysfunction of corneal nociceptive signaling and corneal sensitization.

Activation of the endocannabinoid system has been reported to be analgesic and anti-inflammatory.

The purpose of this research was to investigate the antinociceptive and anti-inflammatory effects of cannabinoids with reported actions at cannabinoid 1 (CB1R) and cannabinoid 2 (CB2R) receptors and/or noncannabinoid receptors in an experimental model of corneal hyperalgesia.

Topical cannabinoids reduce corneal hyperalgesia and inflammation.

The antinociceptive and anti-inflammatory effects of Δ8THC are mediated primarily via CB1R, whereas that of the cannabinoids CBD and HU-308, involve activation of 5-HT1A receptors and CB2Rs, respectively.

Cannabinoids could be a novel clinical therapy for corneal pain and inflammation resulting from ocular surface injury.”

https://www.ncbi.nlm.nih.gov/pubmed/29450258

http://online.liebertpub.com/doi/abs/10.1089/can.2017.0041

Effects of chronic Δ9-tetrahydrocannabinol treatment on Rho/Rho-kinase signalization pathway in mouse brain.

Saudi Pharmaceutical Journal

“Δ9-Tetrahydrocannabinol (Δ9-THC) shows its effects by activating cannabinoid receptors which are on some tissues and neurons. Cannabinoid systems have role on cell proliferation and development of neurons. Furthermore, it is interesting that cannabinoidsystem and rho/rho-kinase signalization pathway, which have important role on cell development and proliferation, may have role on neuron proliferation and development together. Thus, a study is planned to investigate rhoA and rho-kinase enzyme expressions and their activities in the brain of chronic Δ9-THC treated mice. One group of mice are treated with Δ9-THC once to see effects of acute treatment. Another group of mice are treated with Δ9-THC three times per day for one month. After this period, rhoA and rho-kinase enzyme expressions and their activities in mice brains are analyzed by ELISA method. Chronic administration of Δ9-THC decreased the expression of rhoA while acute treatment has no meaningful effect on it. Administration of Δ9-THC did not affect expression of rho-kinase on both chronic and acute treatment. Administration of Δ9-THC increased rho-kinase activity on both chronic and acute treatment, however, chronic treatment decreased its activity with respect to acute treatment. This study showed that chronic Δ9-THC treatment down-regulated rhoA expression and did not change the expression level of rho-kinase which is downstream effector of rhoA. However, it elevated the rho-kinase activity. Δ9-THC induced down-regulation of rhoA may cause elevation of cypin expression and may have benefit on cypin related diseases. Furthermore, use of rho-kinase inhibitors and Δ9-THC together can be useful on rho-kinase related diseases.”