Current and Potential Use of Biologically Active Compounds Derived from Cannabis sativa L. in the Treatment of Selected Diseases

pubmed logo

“Cannabis sativa L. contains numerous compounds with antioxidant and anti-inflammatory properties, including the flavonoids and the cannabinoids, particularly Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD).

Cannabinoids have an effect on the endocannabinoid system (ECS), a cellular communication network, and are, hence, widely studied for medical applications.

Epidiolex®, a 99% pure oral CBD extract, has been approved by the FDA for the treatment of epilepsy. Nabiximols (Sativex) is an oromucosal spray containing equal volume of THC and CBD, and it is commonly used as an add-on treatment for unresponsive spasticity in multiple sclerosis (MS) patients.

Several in vitro and in vivo studies have also shown that cannabinoids can be used to treat various types of cancer, such as melanoma and brain glioblastoma; the first positive clinical trials on the anticancer effect of a THC:CBD blend with temozolomide (TMZ) in the treatment of highly invasive brain cancer are very promising.

The cannabinoids exert their anticancer properties in in vitro investigations by the induction of cell death, mainly by apoptosis and cytotoxic autophagy, and the inhibition of cell proliferation. In several studies, cannabinoids have been found to induce tumor regression and inhibit angiogenic mechanisms in vitro and in vivo, as well as in two low-numbered epidemiological studies.

They also exhibit antiviral effects by inhibiting ACE2 transcription, blocking viral replication and fusion, and acting as anti-inflammatory agents; indeed, prior CBD consumption (a study of 93,565 persons in Chicago) has also been associated with a much lower incidence of SARS-CoV-2 infections.

It is postulated that cannabis extracts can be used in the treatment of many other diseases such as systemic lupus erythematosus, type 1 diabetes, or various types of neurological disorders, e.g., Alzheimer’s disease.

The aim of this review is to outline the current state of knowledge regarding currently used medicinal preparations derived from C. sativa L. in the treatment of selected cancer and viral diseases, and to present the latest research on the potential applications of its secondary metabolites.”

https://pubmed.ncbi.nlm.nih.gov/39684447/

“C. sativa L. is an extraordinary plant that provides a valuable raw material for medical applications. Its secondary metabolites, cannabinoids, have attracted growing interest in the fight against illness, mainly due to their effect on CB1 and CB2 cannabinoid receptors.”

https://www.mdpi.com/1422-0067/25/23/12738

Cannabidiol effects in stem cells: A systematic review

pubmed logo

“Stem cells play a critical role in human tissue regeneration and repair. In addition, cancer stem cells (CSCs), subpopulations of cancer cells sharing similar characteristics as normal stem cells, are responsible for tumor metastasis and resistance to chemo- and radiotherapy and to tumor relapse.

Interestingly, all stem cells have cannabinoid receptors, such as cannabidiol (CBD), that perform biological functions. The aim of this systematic review was to analyze the effect of CBD on both somatic stem cells (SSCs) and CSCs.

Of the 276 articles analyzed, 38 were selected according to the inclusion and exclusion criteria. A total of 27 studied the effect of CBD on SSCs, finding that 44% focused on CBD differentiation effect and 56% on its protective activity. On the other hand, 11 articles looked at the effect of CBD on CSCs, including glioblastoma (64%), lung cancer (27%), and breast cancer (only one article).

Our results showed that CBD exerted a differentiating and protective effect on SCCs. In addition, this molecule demonstrated an antiproliferative effect on some CSCs, although most of the analyses were performed in vitro.

Therefore, although in vivo studies should be necessary to justify its clinical use, CBD and its receptors could be a specific target to act on both SSCs and CSCs.”

https://pubmed.ncbi.nlm.nih.gov/39653426/

https://iubmb.onlinelibrary.wiley.com/doi/10.1002/biof.2148

Improving the Biopharmaceutical Properties of Cannabinoids in Glioblastoma Multiforme Therapy With Nanotechnology: A Drug Delivery Perspective

pubmed logo

“Glioblastoma multiforme (GBM) is the most prevalent primary brain tumor in adults and is known for its rapid proliferation and infiltrative nature. Current therapeutic strategies include surgical resection followed by radio- and chemotherapy. Still, they are hindered by GBM biological characteristics and physical-chemical properties of chemotherapeutic drugs, leading to limited efficacy and poor prognosis.

Cannabinoids have emerged as potential anti-GBM agents, exhibiting antiangiogenic, antimetastatic, and antiproliferative effects. However, their hydrophobicity and poor oral bioavailability pose significant challenges for clinical applications. This study evaluates the potential of nanocarriers in enhancing the solubility and targeted delivery of cannabinoids for GBM therapy.

The innovative combination of nanotechnology with cannabinoid-based treatment offers a promising strategy to improve therapeutic outcomes. We addressed the application of nanocarriers to deliver cannabinoids, which can enhance passage across the blood-brain barrier and enable targeted therapy. Studies demonstrate the potential of nanocarriers in improving solubility, stability, and controlled release of cannabinoids, highlighting the advancements in nanocarrier design for optimized delivery to glioma cells.

Cannabinoids can exert their antitumor effect, including the induction of apoptosis through the ceramide and p8-regulated pathways and the modulation of immune responses. The evidence found in this study supports the potential of cannabinoid-based nanotechnologies in GBM therapeutic regimens as a strategy to enhance its efficacy and patient outcomes.”

https://pubmed.ncbi.nlm.nih.gov/39620407/

https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/ddr.70023

Cannabidiol and fluorinated derivative anti-cancer properties against glioblastoma multiforme cell lines, and synergy with imidazotetrazine agents

pubmed logo

“Background: Glioblastoma multiforme (GBM) is an aggressive cancer with poor prognosis, partly due to resistance to the standard chemotherapy treatment, temozolomide (TMZ). Phytocannabinoid cannabidiol (CBD) has exhibited anti-cancer effects against GBM, however, CBD’s ability to overcome common resistance mechanisms to TMZ have not yet been investigated. 4′-Fluoro-cannabidiol (4′-F-CBD, or HUF-101/PECS-101) is a derivative of CBD, that exhibits increased activity compared to CBD during in vivo behavioural studies.

Methods: This anti-cancer activity of cannabinoids against GBM cells sensitive to and representing major resistance mechanisms to TMZ was investigated. Cannabinoids were also studied in combination with imidazotetrazine agents, and advanced mass spectrometry with the 3D OrbiSIMS was used to investigate the mechanism of action of CBD.

Results: CBD and 4′-F-CBD were found to overcome two major resistance mechanisms (methylguanine DNA-methyltransferase (MGMT) overexpression and DNA mismatch repair (MMR)-deficiency). Synergistic responses were observed when cells were exposed to cannabinoids and imidazotetrazine agents. Synergy increased with T25 and 4′-F-CBD. 3D OrbiSIMS analysis highlighted the presence of methylated-DNA, a previously unknown anti-cancer mechanism of action of CBD.

Conclusions: This work demonstrates the anti-cancer activity of 4′-F-CBD and the synergy of cannabinoids with imidazotetrazine agents for the first time and expands understanding of CBD mechanism of action.”

https://pubmed.ncbi.nlm.nih.gov/39516685/

https://www.nature.com/articles/s44276-024-00088-0

Preparation of a nanoemulsion containing active ingredients of cannabis extract and its application for glioblastoma: in vitro and in vivo studies

pubmed logo

“Recently, the anti-tumor effects of cannabis extract on various cancers have attracted the attention of researchers.

Here, we report a nanoemulsion (NE) composition designed to enhance the delivery of two active components in cannabis extracts (∆9-Tetrahydrocannabinol (THC) and Cannabidiol (CBD)) in an animal model of glioblastoma. The efficacy of the NE containing the two drugs (NED) was compared with the bulk drugs and carrier (NE without the drugs) using the C6 tumor model in rats. Hemocompatibility factors (RBC, MCV, MCH, MCHC, RDW, PPP, PT and PTT) were studied to determine the potential in vivo toxicity of NED. The optimized NED with mean ± SD diameter 29 ± 6 nm was obtained.

It was shown that by administering the drugs in the form of NED, the hemocompatibility increased. Cytotoxicity studies indicated that the NE without the active components (i.e. mixture of surfactants and oil) was the most cytotoxic group, while the bulk group had no toxicity. From the in vivo MRI and survival studies, the NED group had maximum efficacy (with ~4 times smaller tumor volume on day 7 of treatment, compared with the control. Also, survival time of the control, bulk drug, NE and NED were 9, 4, 12.5 and 51 days, respectively) with no important adverse effects.

In conclusion, the NE containing cannabis extract could be introduced as an effective treatment in reducing brain glioblastoma tumor progression.”

https://pubmed.ncbi.nlm.nih.gov/39375818/

“Based on our findings, the nanoemulsion model containing CBD and THC increased the antitumor effect of the drugs. This may be due to the role of nanoemulsions in improving drug delivery across the blood-brain barrier and improving blood compatibility during intravenous drug administration. However, this study is a primary investigation in the rat animal model, and future studies should consider further evaluation of toxicity and efficacy in larger animal populations.”

https://bmcpharmacoltoxicol.biomedcentral.com/articles/10.1186/s40360-024-00788-w

From bench to bedside: the application of cannabidiol in glioma

pubmed logo

“Glioma is the most common malignant tumor in central nervous system, with significant health burdens to patients. Due to the intrinsic characteristics of glioma and the lack of breakthroughs in treatment modalities, the prognosis for most patients remains poor. This results in a heavy psychological and financial load worldwide.

In recent years, cannabidiol (CBD) has garnered widespread attention and research due to its anti-tumoral, anti-inflammatory, and neuroprotective properties.

This review comprehensively summarizes the preclinical and clinical research on the use of CBD in glioma therapy, as well as the current status of nanomedicine formulations of CBD, and discusses the potential and challenges of CBD in glioma therapy in the future.”

https://pubmed.ncbi.nlm.nih.gov/38987805/

“CBD, a non-psychoactive cannabinoid derived from the cannabis plant, has shown promising potential in the treatment of gliomas. Characterized by its safety, good tolerability, and absence of psychoactive effects, CBD induces apoptosis in glioma cells, mitochondrial dysfunction, and autophagy, thereby inhibiting the proliferation and invasion of glioma cells, suppressing the expression of GSCs properties, and promoting cell death. Additionally, it enhances the sensitivity to radiotherapy and chemotherapy while protecting neural functions, playing a significant role in the management of glioma symptoms. Preclinical and clinical studies have demonstrated encouraging anti-glioma activity. “

https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-024-05477-0

The antitumor action of endocannabinoids in the tumor microenvironment of glioblastoma

pubmed logo

“Approximately 80% of all malignant brain tumors are gliomas, which are primary brain tumors. The most prevalent subtype of glioma, glioblastoma multiforme (GBM), is also the most deadly. Chemotherapy, immunotherapy, surgery, and conventional pharmacotherapy are currently available therapeutic options for GBM; unfortunately, these approaches only prolong the patient’s life by 5 years at most. Despite numerous intensive therapeutic options, GBM is considered incurable.

Accumulating preclinical data indicate that overt antitumoral effects can be induced by pharmacologically activating endocannabinoid receptors on glioma cells by modifying important intracellular signaling cascades. The complex mechanism underlying the endocannabinoid receptor-evoked antitumoral activity in experimental models of glioma may inhibit the ability of cancer cells to invade, proliferate, and exhibit stem cell-like characteristics, along with altering other aspects of the complex tumor microenvironment. The exact biological function of the endocannabinoid system in the development and spread of gliomas, however, is remains unclear and appears to rely heavily on context.

Previous studies have revealed that endocannabinoid receptors are present in the tumor microenvironment, suggesting that these receptors could be novel targets for the treatment of GBM. Additionally, endocannabinoids have demonstrated anticancer effects through signaling pathways linked to the classic features of cancer. Thus, the pharmacology of endocannabinoids in the glioblastoma microenvironment is the main topic of this review, which may promote the development of future GBM therapies.”

https://pubmed.ncbi.nlm.nih.gov/38720772/

https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2024.1395156/full

Altering biomolecular condensates as a potential mechanism that mediates cannabidiol effect on glioblastoma

pubmed logo

“Glioblastoma (GBM) is an extremely aggressive primary brain tumor with poor prognosis, short survival time post-diagnosis and high recurrence. Currently, no cure for GBM exists. The identification of an effective therapeutic modality for GBM remains a high priority amongst medical professionals and researches.

In recent studies, inhalant cannabidiol (CBD) has demonstrated promise in effectively inhibiting GBM tumor growth.

However, exactly how CBD treatment affects the physiology of these tumor cells remains unclear. Stress granules (SG) (a sub-class of biomolecular condensates (BMC)) are dynamic, membrane-less intracellular microstructures which contain proteins and nucleic acids. The formation and signaling of SGs and BMCs plays a significant role in regulating malignancies.

This study investigates whether inhaled CBD may play an intervening role towards SGs in GBM tumor cells. Integrated bioinformatics approaches were preformed to gain further insights. This includes use of Immunohistochemistry and flow cytometry to measure SGs, as well as expression and phosphorylation of eukaryotic initiation factor-2α (eIF2α).

The findings of this study reveal that CBD receptors (and co-regulated genes) have the potential to play an important biological role in the formation of BMCs within GBM. In this experiment, CBD treatment significantly increased the volume of TIAR-1. This increase directly correlated with elevation in both eIF2α expression and p-eIF2α in CBD treated tissues in comparison to the placebo group (p < 0.05).

These results suggest that inhalant CBD significantly up-regulated SGs in GBM, and thus support a theory of targeting BMCs as a potential therapeutic substrate for treating GBM.”

https://pubmed.ncbi.nlm.nih.gov/38713310/

https://link.springer.com/article/10.1007/s12032-024-02381-x

Cannabidiol induces ERK activation and ROS production to promote autophagy and ferroptosis in glioblastoma cells

pubmed logo

“Small molecule-driven ERK activation is known to induce autophagy and ferroptosis in cancer cells. Herein the effect of cannabidiol (CBD), a phytochemical derived from Cannabis sativa, on ERK-driven autophagy and ferroptosis has been demonstrated in glioblastoma (GBM) cells (U87 and U373 cells).

CBD imparted significant cytotoxicity in GBM cells, induced activation of ERK (not JNK and p38), and increased intracellular reactive oxygen species (ROS) levels. It increased the autophagy-related proteins such as LC3 II, Atg7, and Beclin-1 and modulated the expression of ferroptosis-related proteins such as glutathione peroxidase 4 (GPX4), SLC7A11, and TFRC. CBD significantly elevated the endoplasmic reticulum stress, ROS, and iron load, and decreased GSH levels. Inhibitors of autophagy (3-MA) and ferroptosis (Fer-1) had a marginal effect on CBD-induced autophagy/ferroptosis. Treatment with N-acetyl-cysteine (antioxidant) or PD98059 (ERK inhibitor) partly reverted the CBD-induced autophagy/ferroptosis by decreasing the activation of ERK and the production of ROS.

Overall, CBD induced autophagy and ferroptosis through the activation of ERK and generation of ROS in GBM cells.”

https://pubmed.ncbi.nlm.nih.gov/38583854/

“In this study, we investigated the anti-cancer effect of CBD. CBD activated ROS production and ERK pathway and modulated the expression of proteins related to autophagy and ferroptosis. Additionally, CBD suppressed the activity of SLC7A11, a component of the System Xc-cystine/glutamate receptor, and enhanced the expression of TFRC, an iron ion channel. Through these mechanisms, our study provides evidence that CBD stimulates both autophagy and ferroptosis in GBM cells”

https://www.sciencedirect.com/science/article/abs/pii/S0009279724001418?via%3Dihub

Cannabinoids in the treatment of glioblastoma

pubmed logo

“Glioblastoma (GBM) is the most prevalent primary malignant tumor of the nervous system. While the treatment of other neoplasms is increasingly more efficacious the median survival rate of GBM patients remains low and equals about 14 months. Due to this fact, there are intensive efforts to find drugs that would help combat GBM.

Nowadays cannabinoids are becoming more and more important in the field of cancer and not only because of their properties of antiemetic drugs during chemotherapy. These compounds may have a direct cytotoxic effect on cancer cells.

Studies indicate GBM has disturbances in the endocannabinoid system-changes in cannabinoid metabolism as well as in the cannabinoid receptor expression. The GBM cells show expression of cannabinoid receptors 1 and 2 (CB1R and CB2R), which mediate various actions of cannabinoids. Through these receptors, cannabinoids inhibit the proliferation and invasion of GBM cells, along with changing their morphology.

Cannabinoids also induce an intrinsic pathway of apoptosis in the tumor. Hence the use of cannabinoids in the treatment of GBM may be beneficial to the patients. So far, studies focusing on using cannabinoids in GBM therapy are mainly preclinical and involve cell lines and mice.

The results are promising and show cannabinoids inhibit GBM growth. Several clinical studies are also being carried out.

The preliminary results show good tolerance of cannabinoids and prolonged survival after administration of these drugs.

In this review, we describe the impact of cannabinoids on GBM and glioma cells in vitro and in animal studies. We also provide overview of clinical trials on using cannabinoids in the treatment of GBM.”

https://pubmed.ncbi.nlm.nih.gov/38457018/

https://link.springer.com/article/10.1007/s43440-024-00580-x