Spontaneous regression of septum pellucidum/forniceal pilocytic astrocytomas–possible role of Cannabis inhalation.

“The purpose of this report is to document spontaneous regression of pilocytic astrocytomas of the septum pellucidum and to discuss the possible role of cannabis in promoting regression.

We report two children with septum pellucidum/forniceal pilocytic astrocytoma (PA) tumors… Neither patient received any conventional adjuvant treatment.

The tumors regressed over the same period of time that cannabis was consumed via inhalation, raising the possibility that the cannabis played a role in the tumor regression.”

http://www.ncbi.nlm.nih.gov/pubmed/21336992

Cannabinoid receptors in human astroglial tumors.

“…cannabinoids are reported to inhibit the growth of tumors, including gliomas. These effects have been claimed to be mediated via cannabinoid receptors 1 and 2 (CB1, CB2).

We conclude that cannabinoid therapy of human gliomas targets not only receptors on tumor, but also on other cell types…”

http://www.ncbi.nlm.nih.gov/pubmed/16893424

5-Lipoxygenase and anandamide hydrolase (FAAH) mediate the antitumor activity of cannabidiol, a non-psychoactive cannabinoid.

“It has been recently reported that cannabidiol (CBD), a non-psychoactive cannabinoid, is able to kill glioma cells, both in vivo and in vitro, independently of cannabinoid receptor stimulation.

…the present investigation indicates that CBD exerts its antitumoral effects through modulation of the LOX pathway and of the endocannabinoid system…”

http://www.ncbi.nlm.nih.gov/pubmed/18028339

Cannabinoids induce glioma stem-like cell differentiation and inhibit gliomagenesis.

“Glioma stem-like cells constitute one of the potential origins of gliomas, and therefore, their elimination is an essential factor for the development of efficient therapeutic strategies.

Cannabinoids are known to exert an antitumoral action on gliomas that relies on at least two mechanisms: induction of apoptosis of transformed cells and inhibition of tumor angiogenesis…

The discovery of an endogenous cannabinoid system, together with the great improvement in our understanding of the signaling mechanisms responsible for cannabinoid actions, has fostered the interest in the potential therapeutic applications of cannabinoids.

Several studies have demonstrated a significant antitumoral action of cannabinoid ligands in animal models. Thus, cannabinoid administration to nude mice curbs the growth of different tumors, including gliomas…

Cannabinoids are known to exert an antitumoral action against gliomas…

Overall, our results demonstrate that cannabinoids target glioma stem-like cells, promote their differentiation, and inhibit gliomagenesis, thus giving further support to their potential use in the management of malignant gliomas.

In conclusion, our results demonstrate the action of cannabinoids on glioma stem-like cells and thus may open new avenues for cannabinoid-based antitumoral strategies.”

http://www.jbc.org/content/282/9/6854.long

Cannabinoids inhibit peptidoglycan-induced phosphorylation of NF-κB and cell growth in U87MG human malignant glioma cells.

“Nuclear factor (NF)-κB is the key transcription factor involved in the inflammatory responses, and its activation aggravates tumors. Peptidoglycan (PGN), a main cell wall component of Gram-positive bacteria, stimulates Toll-like receptor 2 (TLR-2) and activates a number of inflammatory pathways, including NF-κB…

Cannabinoids have been reported to exert anti-inflammatory and antitumor effects…

Our finding that cannabinoids suppress the NF-κB inflammatory pathway and cell growth via CB1 receptors in glioma cells provides evidence for the therapeutic potential of targeting cannabinoid receptors for the treatment of inflammation-dependent tumor progression.”

http://www.ncbi.nlm.nih.gov/pubmed/22842590

Marijuana & Brain Cancer: Why CBD Beats Gliomas

“A non-psychoactive chemical found in marijuana called cannabidiol (CBD) could offer an effective treatment for brain cancer and is potentially an effective anti-cancer drug in the management of gliomas, without side effects, according to a new study from a team of Investigators in Spain, Italy and Canada.

The results suggest that CBD helps battle brain cancer through a combination of anti-cancer effects at the molecular level.”

More: http://blog.sfgate.com/smellthetruth/2013/12/05/marijuana-brain-cancer-why-cbd-beats-gliomas/

Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress.

“Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues.

Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice.

Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells.

This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells.” http://www.ncbi.nlm.nih.gov/pubmed/24281104

“The therapy of gliomas, the most frequent class of malignant primary brain tumors and one of the most aggressive forms of cancer characterized by high invasiveness, a high proliferation rate and rich neovascularization, could benefit from the use of cannabinoids, the active compounds of Cannabis sativa, and their synthetic derivatives. They have been shown to mimic the endogenous substances named “endocannabinoids” that activate specific cannabinoid receptors (CB1 and CB2).

Cannabinoids have been proven to inhibit glioma tumor growth in either in vitro or in vivo models through several cellular pathways such as elevating ceramide levels, modulating PI3K/Akt, MAPK kinases, inducing autophagy and oxidative stress state in glioma cells, thus arresting cell proliferation and inducing apoptosis. Since cannabinoids kill tumor cells without toxicity on their non transformed counterparts, probably modulating the cell survival/cell death pathways differently, they can represent a class of new potential anticancer drugs.” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3835116/

http://www.thctotalhealthcare.com/category/gllomas/

Cannabidiol, a Non-Psychoactive Cannabinoid Compound, Inhibits Proliferation and Invasion in U87-MG and T98G Glioma Cells through a Multitarget Effect.

An external file that holds a picture, illustration, etc.
Object name is pone.0076918.g001.jpg

“…the non-psychoactive cannabinoid compound cannabidiol (CBD) effectively limits human glioma cell growth, both in vitro and in vivo… the present investigation confirms the antiproliferative and antiinvasive effects of CBD in U87-MG cells.

 More interestingly, these effects can also be extended to T98G glioma cells, a well known Δ9-THC-resistant lineage…

Taken together, these results provide new insights into the antitumor action of CBD, showing that this cannabinoid affects multiple tumoral features and molecular pathways.

 As CBD is a non-psychoactive phytocannabinoid that appears to be devoid of side effects, our results support its exploitation as an effective anti-cancer drug in the management of gliomas.”

 http://www.ncbi.nlm.nih.gov/pubmed/24204703

Full-text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3804588/

Systematic review of the literature on clinical and experimental trials on the antitumor effects of cannabinoids in gliomas.

“To evaluate, through a systematic review of the literature, the antitumoral effects of cannabinoids on gliomas…

  In all experimental studies included, cannabinoids exerted antitumoral activity in vitro and/or antitumoral evidence in vivo in several models of tumor cells and tumors.

The antitumor activity included: antiproliferative effects (cell cycle arrest), decreased viability and cell death by toxicity, apoptosis, necrosis, autophagy, as well as antiangiogenic and antimigratory effects.

 Antitumoral evidence included: reduction in tumor size, antiangiogenic, and antimetastatic effects.

 Additionally, most of the studies described that the canabinnoids exercised selective antitumoral action in several distinct tumor models. Thereby, normal cells used as controls were not affected.

The safety factor in the cannabinoids’ administration has also been demonstrated in vivo.

 The various cannabinoids tested in multiple tumor models showed antitumoral effects both in vitro and in vivo.

 These findings indicate that cannabinoids are promising compounds for the treatment of gliomas.”

http://www.ncbi.nlm.nih.gov/pubmed/24142199

Cannabidiol, a non-psychoactive cannabinoid compound, affects metalloproteinases and pro-survival intracellular pathways in u87-mg human glioma cell line

“Malignant gliomas are the most common primary brain tumors… Recently, we have shown that the non-psychoactive cannabinoid compound cannabidiol (CBD) induced apoptosis of human glioma cells in vitro and tumor regression in vivo…the present study was to investigate the anti-migratory action of CBD…

 In conclusion, the present investigation adds further insights into the antitumoral action of the non-psychoactive CBD, showing multiple mechanisms through which the cannabinoid inhibits glioma cell growth and motility.

As CBD is a natural compound without psychotropic and side effects, these data lead us to consider CBD as a new potential anticancer drug useful in the management of gliomas.”

http://air.unimi.it/handle/2434/142533