Medicinal Properties of Cannabinoids, Terpenes, and Flavonoids in Cannabis, and Benefits in Migraine, Headache, and Pain: An Update on Current Evidence and Cannabis Science.

Related image

“Comprehensive literature reviews of historical perspectives and evidence supporting cannabis/cannabinoids in the treatment of pain, including migraine and headache, with associated neurobiological mechanisms of pain modulation have been well described.

Most of the existing literature reports on the cannabinoids Δ9 -tetrahydrocannabinol (THC) and cannabidiol (CBD), or cannabis in general. There are many cannabis strains that vary widely in the composition of cannabinoids, terpenes, flavonoids, and other compounds. These components work synergistically to produce wide variations in benefits, side effects, and strain characteristics. Knowledge of the individual medicinal properties of the cannabinoids, terpenes, and flavonoids is necessary to cross-breed strains to obtain optimal standardized synergistic compositions. This will enable targeting individual symptoms and/or diseases, including migraine, headache, and pain.

OBJECTIVE:

Review the medical literature for the use of cannabis/cannabinoids in the treatment of migraine, headache, facial pain, and other chronic pain syndromes, and for supporting evidence of a potential role in combatting the opioid epidemic. Review the medical literature involving major and minor cannabinoids, primary and secondary terpenes, and flavonoids that underlie the synergistic entourage effects of cannabis. Summarize the individual medicinal benefits of these substances, including analgesic and anti-inflammatory properties.

CONCLUSION:

There is accumulating evidence for various therapeutic benefits of cannabis/cannabinoids, especially in the treatment of pain, which may also apply to the treatment of migraine and headache. There is also supporting evidence that cannabis may assist in opioid detoxification and weaning, thus making it a potential weapon in battling the opioid epidemic. Cannabis science is a rapidly evolving medical sector and industry with increasingly regulated production standards. Further research is anticipated to optimize breeding of strain-specific synergistic ratios of cannabinoids, terpenes, and other phytochemicals for predictable user effects, characteristics, and improved symptom and disease-targeted therapies.”

https://www.ncbi.nlm.nih.gov/pubmed/30152161

Patterns of medicinal cannabis use, strain analysis, and substitution effect among patients with migraine, headache, arthritis, and chronic pain in a medicinal cannabis cohort.

The Journal of Headache and Pain Cover Image

“Medicinal cannabis registries typically report pain as the most common reason for use. It would be clinically useful to identify patterns of cannabis treatment in migraine and headache, as compared to arthritis and chronic pain, and to analyze preferred cannabis strains, biochemical profiles, and prescription medication substitutions with cannabis.

RESULTS:

Of 2032 patients, 21 illnesses were treated with cannabis. Pain syndromes accounted for 42.4% (n = 861) overall; chronic pain 29.4% (n = 598;), arthritis 9.3% (n = 188), and headache 3.7% (n = 75;). Across all 21 illnesses, headache was a symptom treated with cannabis in 24.9% (n = 505). These patients were given the ID Migraine™ questionnaire, with 68% (n = 343) giving 3 “Yes” responses, 20% (n = 102) giving 2 “Yes” responses (97% and 93% probability of migraine, respectively). Therefore, 88% (n = 445) of headache patients were treating probable migraine with cannabis. Hybrid strains were most preferred across all pain subtypes, with “OG Shark” the most preferred strain in the ID Migraine™ and headache groups. Many pain patients substituted prescription medications with cannabis (41.2-59.5%), most commonly opiates/opioids (40.5-72.8%). Prescription substitution in headache patients included opiates/opioids (43.4%), anti-depressant/anti-anxiety (39%), NSAIDs (21%), triptans (8.1%), anti-convulsants (7.7%), muscle relaxers (7%), ergots (0.4%).

CONCLUSIONS:

Chronic pain was the most common reason for cannabis use, consistent with most registries. The majority of headache patients treating with cannabis were positive for migraine. Hybrid strains were preferred in ID Migraine™, headache, and most pain groups, with “OG Shark”, a high THC (Δ9-tetrahydrocannabinol)/THCA (tetrahydrocannabinolic acid), low CBD (cannabidiol)/CBDA (cannabidiolic acid), strain with predominant terpenes β-caryophyllene and β-myrcene, most preferred in the headache and ID Migraine™ groups. This could reflect the potent analgesic, anti-inflammatory, and anti-emetic properties of THC, with anti-inflammatory and analgesic properties of β-caryophyllene and β-myrcene. Opiates/opioids were most commonly substituted with cannabis. Prospective studies are needed, but results may provide early insight into optimizing crossbred cannabis strains, synergistic biochemical profiles, dosing, and patterns of use in the treatment of headache, migraine, and chronic pain syndromes.”

Medication overuse headache following repeated morphine, but not [INCREMENT]9-tetrahydrocannabinol administration in the female rat.

 

Image result for wolters kluwer

“The potential of [INCREMENT]-tetrahydrocannabinol (THC) as a treatment for migraine depends on antinociceptive efficacy with repeated administration.

Although morphine has good antinociceptive efficacy, repeated administration causes medication overuse headache (MOH) – a condition in which the intensity/frequency of migraine increases.

The present study compared the effect of repeated morphine or THC administration on the magnitude and duration of migraine-like pain induced by a microinjection of allyl isothiocyanate (AITC) onto the dura mater of female rats.

Acute administration of THC or morphine prevented AITC-induced depression of wheel running. This antinociception was maintained in rats treated repeatedly with THC, but not following repeated administration of morphine. Moreover, repeated morphine, but not THC administration, extended the duration of AITC-induced depression of wheel running.

These data indicate that tolerance and MOH develop rapidly to morphine administration. The lack of tolerance and MOH to THC indicates that THC may be an especially effective long-term treatment against migraine.”

Emerging Role of (Endo)Cannabinoids in Migraine.

Image result for frontiers in pharmacology

“In this mini-review, we summarize recent discoveries and present new hypotheses on the role of cannabinoids in controlling trigeminal nociceptive system underlying migraine pain.

Individual sections of this review cover key aspects of this topic, such as: (i) the current knowledge on the endocannabinoid system (ECS) with emphasis on expression of its components in migraine related structures; (ii) distinguishing peripheral from central site of action of cannabinoids, (iii) proposed mechanisms of migraine pain and control of nociceptive traffic by cannabinoids at the level of meninges and in brainstem, (iv) therapeutic targeting in migraine of monoacylglycerol lipase and fatty acid amide hydrolase, enzymes which control the level of endocannabinoids; (v) dual (possibly opposing) actions of cannabinoids via anti-nociceptive CB1 and CB2 and pro-nociceptive TRPV1 receptors.

We explore the cannabinoid-mediated mechanisms in the frame of the Clinical Endocannabinoid Deficiency (CECD) hypothesis, which implies reduced tone of endocannabinoids in migraine patients. We further discuss the control of cortical excitability by cannabinoids via inhibition of cortical spreading depression (CSD) underlying the migraine aura.

Finally, we present our view on perspectives of Cannabis-derived (extracted or synthetized marijuana components) or novel endocannabinoid therapeutics in migraine treatment.”

https://www.ncbi.nlm.nih.gov/pubmed/29740328

Endocannabinoid System and Migraine Pain: An Update.

 Image result for frontiers in neuroscience

“The trigeminovascular system (TS) activation and the vasoactive release from trigeminal endings, in proximity of the meningeal vessels, are considered two of the main effector mechanisms of migraine attacks. Several other structures and mediators are involved, however, both upstream and alongside the TS.

Among these, the endocannabinoid system (ES) has recently attracted considerable attention. Experimental and clinical data suggest indeed a link between dysregulation of this signaling complex and migraine headache.

Clinical observations, in particular, show that the levels of anandamide (AEA)-one of the two primary endocannabinoid lipids-are reduced in cerebrospinal fluid and plasma of patients with chronic migraine (CM), and that this reduction is associated with pain facilitation in the spinal cord.

AEA is produced on demand during inflammatory conditions and exerts most of its effects by acting on cannabinoid (CB) receptors. AEA is rapidly degraded by fatty acid amide hydrolase (FAAH) enzyme and its levels can be modulated in the peripheral and central nervous system (CNS) by FAAH inhibitors.

Inhibition of AEA degradation via FAAH is a promising therapeutic target for migraine pain, since it is presumably associated to an increased availability of the endocannabinoid, specifically at the site where its formation is stimulated (e.g., trigeminal ganglion and/or meninges), thus prolonging its action.”

https://www.ncbi.nlm.nih.gov/pubmed/29615860

https://www.frontiersin.org/articles/10.3389/fnins.2018.00172/full

Anti-migraine effect of ∆9-tetrahydrocannabinol in the female rat.

European Journal of Pharmacology

“Current anti-migraine treatments have limited efficacy and many side effects. Although anecdotal evidence suggests that marijuana is useful for migraine, this hypothesis has not been tested in a controlled experiment. Thus, the present study tested whether administration of ∆9-tetrahydrocannabinol (THC) produces anti-migraine effects in the female rat.

These data suggest that: 1) THC reduces migraine-like pain when administered at the right dose (0.32mg/kg) and time (immediately after AITC); 2) THC’s anti-migraine effect is mediated by CB1 receptors; and 3) Wheel running is an effective method to assess migraine treatments because only treatments producing antinociception without disruptive side effects will restore normal activity.

These findings support anecdotal evidence for the use of cannabinoids as a treatment for migraine in humans and implicate the CB1 receptor as a therapeutic target for migraine.”

https://www.ncbi.nlm.nih.gov/pubmed/29111112

http://www.sciencedirect.com/science/article/pii/S0014299917307239?via%3Dihub

The Use of Cannabis for Headache Disorders.

Mary Ann Liebert, Inc. publishers

“Headache disorders are common, debilitating, and, in many cases, inadequately managed by existing treatments. Although clinical trials of cannabis for neuropathic pain have shown promising results, there has been limited research on its use, specifically for headache disorders. This review considers historical prescription practices, summarizes the existing reports on the use of cannabis for headache, and examines the preclinical literature exploring the role of exogenous and endogenous cannabinoids to alter headache pathophysiology. Currently, there is not enough evidence from well-designed clinical trials to support the use of cannabis for headache, but there are sufficient anecdotal and preliminary results, as well as plausible neurobiological mechanisms, to warrant properly designed clinical trials. Such trials are needed to determine short- and long-term efficacy for specific headache types, compatibility with existing treatments, optimal administration practices, as well as potential risks.” https://www.ncbi.nlm.nih.gov/pubmed/28861505

“Preclinical studies examining the role of the endocannabinoid system in migraine pathogenesis also suggest a potential therapeutic value for cannabis in the treatment of headache. It has been postulated that a general deficiency in endocannabinoid tone could underlie headache disorders.” http://online.liebertpub.com/doi/10.1089/can.2016.0033

Interactions between the Kynurenine and the Endocannabinoid System with Special Emphasis on Migraine.

ijms-logo

“Both the kynurenine and the endocannabinoid systems are involved in several neurological disorders, such as migraine and there are increasing number of reports demonstrating that there are interactions of two systems. Although their cooperation has not yet been implicated in migraine, there are reports suggesting this possibility. Additionally, the individual role of the endocannabinoid and kynurenine system in migraine is reviewed here first, focusing on endocannabinoids, kynurenine metabolites, in particular kynurenic acid. Finally, the function of NMDA and cannabinoid receptors in the trigeminal system-which has a crucial role in the pathomechanisms of migraine-will also be discussed. The interaction of the endocannabinoid and kynurenine system has been demonstrated to be therapeutically relevant in a number of pathological conditions, such as cannabis addiction, psychosis, schizophrenia and epilepsy. Accordingly, the cross-talk of these two systems may imply potential mechanisms related to migraine, and may offer new approaches to manage the treatment of this neurological disorder.”

https://www.ncbi.nlm.nih.gov/pubmed/28758944

http://www.mdpi.com/1422-0067/18/8/1617

Medicinal Uses of Marijuana and Cannabinoids

Publication Cover

“In the past two decades, there has been increasing interest in the therapeutic potential of cannabis and single cannabinoids, mainly cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC). THC and cannabis products rich in THC exert their effects mainly through the activation of cannabinoid receptors (CB1 and CB2). Since 1975, 140 controlled clinical trials using different cannabinoids or whole-plant preparations for the treatment of a large number of disorders and symptoms have been conducted. Results have led to the approval of cannabis-based medicines [dronabinol, nabilone, and the cannabis extract nabiximols (Sativex®, THC:CBD = 1:1)] as well as cannabis flowers in several countries. Controlled clinical studies provide substantial evidence for the use of cannabinoid receptor agonists in cancer chemotherapy induced nausea and vomiting, appetite loss and cachexia in cancer and HIV patients, neuropathic and chronic pain, and in spasticity in multiple sclerosis. In addition, there is also some evidence suggesting a therapeutic potential of cannabis-based medicines in other indications including Tourette syndrome, spinal cord injury, Crohn’s disease, irritable bowel syndrome, and glaucoma. In several other indications, small uncontrolled and single-case studies reporting beneficial effects are available, for example in posttraumatic stress disorder, attention deficit hyperactivity disorder, and migraine. The most common side effects of THC and cannabis-based medicines rich in THC are sedation and dizziness (in more than 10% of patients), psychological effects, and dry mouth. Tolerance to these side effects nearly always develops within a short time. Withdrawal symptoms are hardly ever a problem in the therapeutic setting. In recent years there is an increasing interest in the medical use of CBD, which exerts no intoxicating side effects and is usually well-tolerated. Preliminary data suggest promising effects in the treatment of anxiety disorders, schizophrenia, dystonia, and some forms of epilepsy. This review gives an overview on clinical studies which have been published over the past 40 years.”

http://www.tandfonline.com/doi/abs/10.1080/07352689.2016.1265360?needAccess=true&journalCode=bpts20

“Review Identifies 140 Controlled Clinical Trials Related to Cannabis”  http://blog.norml.org/2017/06/04/review-identifies-140-controlled-clinical-trials-related-to-cannabis/

Cannabis for Pain and Headaches: Primer.

Image result for Curr Pain Headache Rep.

“Marijuana has been used both medicinally and recreationally since ancient times and interest in its compounds for pain relief has increased in recent years. The identification of our own intrinsic, endocannabinoid system has laid the foundation for further research.

Synthetic cannabinoids are being developed and synthesized from the marijuana plant such as dronabinol and nabilone. The US Food and Drug Administration approved the use of dronabinol and nabilone for chemotherapy-associated nausea and vomiting and HIV (Human Immunodeficiency Virus) wasting. Nabiximols is a cannabis extract that is approved for the treatment of spasticity and intractable pain in Canada and the UK. Further clinical trials are studying the effect of marijuana extracts for seizure disorders.

Phytocannabinoids have been identified as key compounds involved in analgesia and anti-inflammatory effects.  Other compounds found in cannabis such as flavonoids and terpenes are also being investigated as to their individual or synergistic effects.

This article will review relevant literature regarding medical use of marijuana and cannabinoid pharmaceuticals with an emphasis on pain and headaches.”

https://www.ncbi.nlm.nih.gov/pubmed/28281107