The role of the endocannabinoid system in liver diseases.

Abstract

“Endogenous cannabinoids (ECs) are ubiquitous lipid signaling molecules provided by a number of central and peripheral effects, which are mediated mainly by the specific receptors CB1 and CB2. In the last decade a considerable number of studies has shown that ECs and their receptors play an important role in the pathophysiology of liver diseases. The EC system is strongly up-regulated during chronic liver diseases. Until now it has been implicated in the pathogenesis of fatty liver disease associated with obesity, alcohol abuse, and hepatitis C, in the progression of fibrosis to cirrhosis, and in the development of portal hypertension, hyperdynamic circulatory syndrome and its complications, and cirrhotic cardiomyopathy. Furthermore, the EC system can participate in the pathogenesis of acute liver injury by modulating the mechanisms responsible for cell injury and inflammatory response. Thus, targeting the CB1 and CB2 receptors represents a potential therapeutic goal for the treatment of liver diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/19285261

Cannabinoid receptors as new targets of antifibrosing strategies during chronic liver diseases.

Abstract

“Chronic liver injury exposes the patient to liver fibrosis and its end stage, cirrhosis, is a major public health problem worldwide. In western countries, prevailing causes of cirrhosis include chronic alcohol consumption, hepatitis C virus infection and non-alcoholic steatohepatitis. Current treatment of hepatic fibrosis is limited to withdrawal of the noxious agent. Nevertheless, suppression of the cause of hepatic injury is not always feasible and numerous efforts are directed at the development of liver-specific antifibrotic therapies. Along these lines, the authors recently demonstrated that the endocannabinoid system shows promise as a novel target for antifibrotic therapy during chronic liver injury. Indeed, cannabinoid receptors CB1 and CB2 promote dual pro- and antifibrogenic effects, respectively. Therefore, endocannabinoid-based therapies, combining CB2 agonists and CB1 antagonists may open novel therapeutic perspectives for the treatment of chronic liver diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/17298297

A new strategy to block tumor growth by inhibiting endocannabinoid inactivation.

Image result for faseb journal

“Endocannabinoid signaling has been shown to be enhanced in several cancer tissues and malignant cells, and studies in cell lines have shown that this up-regulation might serve the purpose of providing transformed cells with a further means to inhibit their proliferation. Here we investigated the effect of inhibitors of endocannabinoid degradation on the growth of rat thyroid tumor xenografts induced in athymic mice. VDM-11, a selective inhibitor of endocannabinoid cellular re-uptake, and arachidonoyl-serotonin (AA-5-HT), a selective blocker of endocannabinoid enzymatic hydrolysis, both inhibited the growth in vivo of tumor xenografts induced by the subcutaneous injection of rat thyroid transformed (KiMol) cells. This effect was accompanied by significantly enhanced endocannabinoid concentrations in the tumors excised at the end of the in vivo experiments. Endocannabinoids, as well as VDM-11 and AA-5-HT, inhibited the growth in vitro of the transformed rat thyroid cells used to induce the tumors in vivo, and their effect was reversed at least in part by the cannabinoid CB1 receptor antagonist SR141716A. This compound, however, when administered alone, did not enhance, but instead slightly inhibited, the growth of rat thyroid transformed cells both in vitro and in tumor xenografts induced in vivo. These findings indicate that endocannabinoids tonically control tumor growth in vivo by both CB1-mediated and non-CB1-mediated mechanisms and that, irrespective of the molecular mechanism of their anti-proliferative action, inhibitors of their inactivation might be used for the development of novel anti-cancer drugs.”  http://www.ncbi.nlm.nih.gov/pubmed/15289448

“A new strategy to block tumor growth by inhibiting endocannabinoid inactivation”  http://www.fasebj.org/content/early/2004/10/02/fj.04-1754fje.long

Cannabidiol inhibits cancer cell invasion via upregulation of tissue inhibitor of matrix metalloproteinases-1.

Cover image

“Although cannabinoids exhibit a broad variety of anticarcinogenic effects, their potential use in cancer therapy is limited by their psychoactive effects. Here we evaluated the impact of cannabidiol, a plant-derived non-psychoactive cannabinoid, on cancer cell invasion. Using Matrigel invasion assays we found a cannabidiol-driven impaired invasion of human cervical cancer (HeLa, C33A) and human lung cancer cells (A549) that was reversed by antagonists to both CB(1) and CB(2) receptors as well as to transient receptor potential vanilloid 1 (TRPV1). The decrease of invasion by cannabidiol appeared concomitantly with upregulation of tissue inhibitor of matrix metalloproteinases-1 (TIMP-1). Knockdown of cannabidiol-induced TIMP-1 expression by siRNA led to a reversal of the cannabidiol-elicited decrease in tumor cell invasiveness, implying a causal link between the TIMP-1-upregulating and anti-invasive action of cannabidiol. P38 and p42/44 mitogen-activated protein kinases were identified as upstream targets conferring TIMP-1 induction and subsequent decreased invasiveness. Additionally, in vivo studies in thymic-aplastic nude mice revealed a significant inhibition of A549 lung metastasis in cannabidiol-treated animals as compared to vehicle-treated controls.

Altogether, these findings provide a novel mechanism underlying the anti-invasive action of cannabidiol and imply its use as a therapeutic option for the treatment of highly invasive cancers.”  http://www.ncbi.nlm.nih.gov/pubmed/19914218

http://www.sciencedirect.com/science/article/pii/S000629520900971X

Inhibition of cancer cell invasion by cannabinoids via increased expression of tissue inhibitor of matrix metalloproteinases-1.

JNCI: Journal of the National Cancer Institute

“Cannabinoids, in addition to having palliative benefits in cancer therapy, have been associated with anticarcinogenic effects. Although the antiproliferative activities of cannabinoids have been intensively investigated, little is known about their effects on tumor invasion.”

“Increased expression of TIMP-1 mediates an anti-invasive effect of cannabinoids. Cannabinoids may therefore offer a therapeutic option in the treatment of highly invasive cancers.”

“There is considerable evidence to suggest an important role for cannabinoids in conferring anticarcinogenic activities. In this study, we identified TIMP-1 as a mediator of the anti-invasive actions of MA, a hydrolysis-stable analog of the endocannabinoid anandamide, and THC, a plant-derived cannabinoid.”

“In conclusion, our results suggest that there exists a signaling pathway by which the binding of cannabinoids to specific receptors leads via intracellular MAPK activation to induction of TIMP-1 expression and subsequent inhibition of tumor cell invasion. To our knowledge, this is the first report of TIMP-1–dependent anti-invasive effects of cannabinoids.”

http://jnci.oxfordjournals.org/content/100/1/59.long

Mechanism of action of cannabinoids: how it may lead to treatment of cachexia, emesis, and pain.

Image result for The Journal of Supportive Oncology

“Many patients with life-threatening diseases such as cancer experience severe symptoms that compromise their health status and deny them quality of life. Patients with cancer often experience cachexia, pain, and depression,which translate into an unacceptable quality of life. The discovery of the endocannabinoid system has led to a renewed interest in the use of cannabinoids for the management of nausea, vomiting, and weight loss arising either from cancer or the agents used to treat cancer. The endocannabinoid system has been found to be a key modulator of systems involved in pain perception, emesis, and reward pathways. As such, it represents a target for development of new medications for controlling the symptoms associated with cancer. Although the cannabinoid receptor agonist tetrahydrocannabinol and one of its analogs are currently the only agents approved for clinical use, efforts are under way to devise other strategies for activating the endocannabinoid system for therapeutic uses.”

http://www.ncbi.nlm.nih.gov/pubmed/15357514

Cannabinoids as novel anti-inflammatory drugs

Figure 1

“Cannabinoids are a group of compounds that mediate their effects through cannabinoid receptors. The discovery of Δ9-tetrahydrocannabinol (THC) as the major psychoactive principle in marijuana, as well as the identification of cannabinoid receptors and their endogenous ligands, has led to a significant growth in research aimed at understanding the physiological functions of cannabinoids. Cannabinoid receptors include CB1, which is predominantly expressed in the brain, and CB2, which is primarily found on the cells of the immune system. The fact that both CB1 and CB2 receptors have been found on immune cells suggests that cannabinoids play an important role in the regulation of the immune system. Recent studies demonstrated that administration of THC into mice triggered marked apoptosis in T cells and dendritic cells, resulting in immunosuppression. In addition, several studies showed that cannabinoids downregulate cytokine and chemokine production and, in some models, upregulate T-regulatory cells (Tregs) as a mechanism to suppress inflammatory responses. The endocannabinoid system is also involved in immunoregulation. For example, administration of endocannabinoids or use of inhibitors of enzymes that break down the endocannabinoids, led to immunosuppression and recovery from immune-mediated injury to organs such as the liver. Manipulation of endocannabinoids and/or use of exogenous cannabinoids in vivo can constitute a potent treatment modality against inflammatory disorders. This review will focus on the potential use of cannabinoids as a new class of anti-inflammatory agents against a number of inflammatory and autoimmune diseases that are primarily triggered by activated T cells or other cellular immune components.”

“Cannabis, commonly known as marijuana, is a product of the Cannabis sativa plant and the active compounds from this plant are collectively referred to as cannabinoids. For several centuries, marijuana has been used as an alternative medicine in many cultures and, recently, its beneficial effects have been shown in: the treatment of nausea and vomiting associated with cancer chemotherapy; anorexia and cachexia seen in HIV/AIDS patients; and in neuropathic pain and spasticity in multiple sclerosis. Cannabinoid pharmacology has made important advances in recent years after the discovery of the cannabinoid receptors (CB1 and CB2). Cannabinoid receptors and their endogenous ligands have provided an excellent platform for the investigation of the therapeutic effects of cannabinoids. It is well known that CB1 and CB2 are heterotrimeric Gi/o-protein-coupled receptors and that they are both expressed in the periphery and the CNS. However, CB1 expression is predominant in the CNS, especially on presynaptic nerves, and CB2 is primarily expressed on immune cells.”

“Cannabinoids are potent anti-inflammatory agents and they exert their effects through induction of apoptosis, inhibition of cell proliferation, suppression of cytokine production and induction of T-regulatory cells (Tregs).”

“Executive summary

  • Cannabinoids, the active components of Cannabis sativa, and endogenous cannabinoids mediate their effects through activation of specific cannabinoid receptors known as cannabinoid receptor 1 and 2 (CB1 and CB2).
  • The cannabinoid system has been shown both in vivo and in vitro to be involved in regulating the immune system through its immunomodulatory properties.
  • Cannabinoids suppress inflammatory response and subsequently attenuate disease symptoms. This property of cannabinoids is mediated through multiple pathways such as induction of apoptosis in activated immune cells, suppression of cytokines and chemokines at inflammatory sites and upregulation of FoxP3+ regulatory T cells.
  • Cannabinoids have been tested in several experimental models of autoimmune disorders such as multiple sclerosis, rheumatoid arthritis, colitis and hepatitis and have been shown to protect the host from the pathogenesis through induction of multiple anti-inflammatory pathways.
  • Cannabinoids may also be beneficial in certain types of cancers that are triggered by chronic inflammation. In such instances, cannabinoids can either directly inhibit tumor growth or suppress inflammation and tumor angiogenesis.”                      http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2828614/

News about therapeutic use of cannabis and endocannabinoid system.

“Growing basic research in recent years led to the discovery of the endocannabinoid system with a central role in neurobiology. New evidence suggests a therapeutic potential of cannabinoids in cancer chemotherapy-induced nausea and vomiting as well as in pain, spasticity and other symptoms in multiple sclerosis and movement disorders. Results of large randomized clinical trials of oral and sublingual Cannabis extracts will be known soon and there will be definitive answers to whether Cannabis has any therapeutic potential. Although the immediate future may lie in plant-based medicines, new targets for cannabinoid therapy focuses on the development of endocannabinoid degradation inhibitors which may offer site selectivity not afforded by cannabinoid receptor agonists.”  http://www.ncbi.nlm.nih.gov/pubmed/15033046

http://www.elsevier.es/es-revista-medicina-clinica-2-linkresolver-novedades-sobre-las-potencialidades-terapeuticas-13059327

Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities.

Philosophical Transactions of the Royal Society B: Biological Sciences: 367 (1607)

“Human tissues express cannabinoid CB(1) and CB(2) receptors that can be activated by endogenously released ‘endocannabinoids’ or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB(1)/CB(2) receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ(9)-tetrahydrocannabinol (Δ(9)-THC)) and Sativex (Δ(9)-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson’s and Huntington’s diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB(2) receptors, and/or (v) adjunctive ‘multi-targeting’.”  https://www.ncbi.nlm.nih.gov/pubmed/23108552

“Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities”  http://rstb.royalsocietypublishing.org/content/367/1607/3353.long

Therapeutic aspects of cannabis and cannabinoids

The British Journal of Psychiatry

“HISTORY OF THERAPEUTIC USE

The first formal report of cannabis as a medicine appeared in China nearly 5000 years ago when it was recommended for malaria, constipation, rheumatic pains and childbirth and, mixed with wine, as a surgical analgesic. There are subsequent records of its use throughout Asia, the Middle East, Southern Africa and South America. Accounts by Pliny, Dioscorides and Galen remained influential in European medicine for 16 centuries.”

“It was not until the 19th century that cannabis became a mainstream medicine in Britain. W. B. O’Shaughnessy, an Irish scientist and physician, observed its use in India as an analgesic, anticonvulsant, anti-spasmodic, anti-emetic and hypnotic. After toxicity experiments on goats and dogs, he gave it to patients and was impressed with its muscle-relaxant, anticonvulsant and analgesic properties, and recorded its use-fulness as an anti-emetic.”

“After these observations were published in 1842, medicinal use of cannabis expanded rapidly. It soon became available ‘over the counter’ in pharmacies and by 1854 it had found its way into the United States Dispensatory. The American market became flooded with dozens of cannabis-containing home remedies.”

“Cannabis was outlawed in 1928 by ratification of the 1925 Geneva Convention on the manufacture, sale and movement of dangerous drugs. Prescription remained possible until final prohibition under the 1971 Misuse of Drugs Act, against the advice of the Advisory Committee on Drug Dependence.”

“In the USA, medical use was effectively ruled out by the Marijuana Tax Act 1937. This ruling has been under almost constant legal challenge and many special dispensations were made between 1976 and 1992 for individuals to receive ‘compassionate reefers’. Although this loophole has been closed, a 1996 California state law permits cultivation or consumption of cannabis for medical purposes, if a doctor provides a written endorsement. Similar arrangements apply in Italy and Canberra, Australia.”

“Results and Conclusions Cannabis and some cannabinoids are effective anti-emetics and analgesics and reduce intra-ocular pressure. There is evidence of symptom relief and improved well-being in selected neurological conditions, AIDS and certain cancers. Cannabinoids may reduce anxiety and improve sleep. Anticonvulsant activity requires clarification. Other properties identified by basic research await evaluation. Standard treatments for many relevant disorders are unsatisfactory. Cannabis is safe in overdose but often produces unwanted effects, typically sedation, intoxication, clumsiness, dizziness, dry mouth, lowered blood pressure or increased heart rate. The discovery of specific receptors and natural ligands may lead to drug developments. Research is needed to optimise dose and route of administration, quantify therapeutic and adverse effects, and examine interactions.”

http://bjp.rcpsych.org/content/178/2/107.long