The therapeutic potential of novel cannabinoid receptors.

Cover image

“Cannabinoids produce a plethora of biological effects, including the modulation of neuronal activity through the activation of CB(1) receptors and of immune responses through the activation of CB(2) receptors. The selective targeting of either of these two receptor subtypes has clear therapeutic value. Recent evidence indicates that some of the cannabinomimetic effects previously thought to be produced through CB(1) and/or CB(2) receptors, be they on neuronal activity, on the vasculature tone or immune responses, still persist despite the pharmacological blockade or genetic ablation of CB(1) and/or CB(2) receptors. This suggests that additional cannabinoid and cannabinoid-like receptors exist. Here we will review this evidence in the context of their therapeutic value and discuss their true belonging to the endocannabinoid signaling system.”  http://www.ncbi.nlm.nih.gov/pubmed/19248809

“The therapeutic potential of novel cannabinoid receptors”  http://www.sciencedirect.com/science/article/pii/S0163725809000266

Update on the endocannabinoid system as an anticancer target.

Image result for Expert Opin Ther Targets.

“INTRODUCTION:

Recent studies have shown that the endocannabinoid system (ECS) could offer an attractive antitumor target. Numerous findings suggest the involvement of this system (constituted mainly by cannabinoid receptors, endogenous compounds and the enzymes for their synthesis and degradation) in cancer cell growth in vitro and in vivo.

AREAS COVERED:

This review covers literature from the past decade which highlights the potential of targeting the ECS for cancer treatment. In particular, the levels of endocannabinoids and the expression of their receptors in several types of cancer are discussed, along with the signaling pathways involved in the endocannabinoid antitumor effects. Furthermore, the beneficial and adverse effects of old and novel compounds in clinical use are discussed.

EXPERT OPINION:

One direction that should be pursued in antitumor therapy is to select compounds with reduced psychoactivity. This is known to be connected to the CB1 receptor; thus, targeting the CB2 receptor is a popular objective. CB1 receptors could be maintained as a target to design new compounds, and mixed CB1-CB2 ligands could be effective if they are able to not cross the BBB. Furthermore, targeting the ECS with agents that activate cannabinoid receptors or inhibitors of endogenous degrading systems such as fatty acid amide hydrolase inhibitors may have relevant therapeutic impact on tumor growth. Additional studies into the downstream consequences of endocannabinoid treatment are required and may illuminate other potential therapeutic targets.”  http://www.ncbi.nlm.nih.gov/pubmed/21244344

“Update on the endocannabinoid system as an anticancer target”  http://www.tandfonline.com/doi/abs/10.1517/14728222.2011.553606?journalCode=iett20

Use of cannabinoid receptor agonists in cancer therapy as palliative and curative agents.

Image result for Best Pract Res Clin Endocrinol Metab

“Cannabinoids (the active components of Cannabis sativa) and their derivatives have received renewed interest in recent years due to their diverse pharmacological activities. In particular, cannabinoids offer potential applications as anti-tumour drugs, based on the ability of some members of this class of compounds to limit cell proliferation and to induce tumour-selective cell death. Although synthetic cannabinoids may have pro-tumour effects in vivo due to their immunosuppressive properties, predominantly inhibitory effects on tumour growth and migration, angiogenesis, metastasis, and also inflammation have been described. Emerging evidence suggests that agonists of cannabinoid receptors expressed by tumour cells may offer a novel strategy to treat cancer. In this chapter we review the more recent results generating interest in the field of cannabinoids and cancer, and provide novel suggestions for the development, exploration and use of cannabinoid agonists for cancer therapy, not only as palliative but also as curative drugs.” https://www.ncbi.nlm.nih.gov/pubmed/19285265

“Use of cannabinoid receptor agonists in cancer therapy as palliative and curative agents” http://www.bprcem.com/article/S1521-690X(09)00005-0/abstract

Cannabis-derived substances in cancer therapy–an emerging anti-inflammatory role for the cannabinoids.

“Cannabinoids, the active components of the cannabis plant, have some clinical merit both as an anti-emetic and appetite stimulant in cachexic patients. Recently, interest in developing cannabinoids as therapies has increased following reports that they possess anti-tumour properties.

 Research into cannabinoids as anti-cancer agents is in its infancy, and has mainly focussed on the pro-apoptotic effects of this class of agent. Impressive anti-cancer activities have been reported; actions that are mediated in large part by disruptions to ubiquitous signalling pathways such as ERK and PI3-K. However, recent developments have highlighted a putative role for cannabinoids as anti-inflammatory agents. Chronic inflammation has been associated with neoplasia for sometime, and as a consequence, reducing inflammation as a way of impacting cancer presents a new role for these compounds.

 This article reviews the ever-changing relationship between cannabinoids and cancer, and updates our understanding of this class of agent. Furthermore, the relationship between chronic inflammation and cancer, and how cannabinoids can impact this relationship will be described.”

http://www.ncbi.nlm.nih.gov/pubmed/20925645

Cannabinoid receptor ligands as potential anticancer agents–high hopes for new therapies?

Image result for Journal of Pharmacy and Pharmacology

“OBJECTIVES:

The endocannabinoid system is an endogenous lipid signalling network comprising arachidonic-acid-derived ligands, cannabinoid (CB) receptors, transporters and endocannabinoid degrading enzymes. The CB(1) receptor is predominantly expressed in neurons but is also co-expressed with the CB(2) receptor in peripheral tissues. In recent years, CB receptor ligands, including Delta(9)-tetrahydrocannabinol, have been proposed as potential anticancer agents.

KEY FINDINGS:

This review critically discusses the pharmacology of CB receptor activation as a novel therapeutic anticancer strategy in terms of ligand selectivity, tissue specificity and potency. Intriguingly, antitumour effects mediated by cannabinoids are not confined to inhibition of cancer cell proliferation; cannabinoids also reduce angiogenesis, cell migration and metastasis, inhibit carcinogenesis and attenuate inflammatory processes. In the last decade several new selective CB(1) and CB(2) receptor agents have been described, but most studies in the area of cancer research have used non-selective CB ligands. Moreover, many of these ligands exert prominent CB receptor-independent pharmacological effects, such as activation of the G-protein-coupled receptor GPR55, peroxisome proliferator-activated receptor gamma and the transient receptor potential vanilloid channels.

SUMMARY:

The role of the endocannabinoid system in tumourigenesis is still poorly understood and the molecular mechanisms of cannabinoid anticancer action need to be elucidated. The development of CB(2)-selective anticancer agents could be advantageous in light of the unwanted central effects exerted by CB(1) receptor ligands. Probably the most interesting question is whether cannabinoids could be useful in chemoprevention or in combination with established chemotherapeutic agents.”

http://www.ncbi.nlm.nih.gov/pubmed/19589225

Scientists believe marijuana compound could fight cancer

“Scientists in California believe they may have discovered a compound in marijuana that can reduce the aggressiveness of some forms of cancer.

The San Francisco Gate reports on the data that has been years in the making. While marijuana has been shown to help reduce nausea and pain in cancer patients, scientists believe that a compound in marijuana has the ability to “turn off” the activity of a gene responsible for metastasis in breast and other types of cancers.

The research team is working out of San Francisco’s California Pacific Medical Center Research Institute and have been working for years on the study. The compound they’re focused on, called cannabidiol, does not produce the psychotropic high associated with marijuana.

Last year, the team published a small study showing the positive effects of cannabidiol on mice. New data is about to be released that expands upon the previous results that the researchers hope will help propel the study even further.

“The preclinical trial data is very strong, and there’s no toxicity. There’s really a lot of research to move ahead with and to get people excited,” said Sean McAllister, who is working alongside scientist Pierre Desprez in the study.

Desprez and McAllister believe that their merging of separate areas of study was serendipitous.

Desprez had been studying the protein ID-1, which he found to play an important role in how cancer could spread. McAllister, on the other hand, was focused on studying anabolic steroids in drug abuse. He soon became focused on with the role non-psychotropic cannabidiol, or CBD, interacts with cancer.

McAllister, after hearing an internal seminar from Desprez on his studies of ID-1, came up with the question “How effective would cannabidiol be on targeting metastatic cancer cells?”

The two then teamed up, with Desprez armed with ID-1 cancer-causing protein, and McAllister with CBD, his cancer-fighting compound.

For their experimentation, the doctors exposed ID-1 to CBD in a petri dish. In a shocking result, the ID-1, the cancer-causing protein, reverted to a normal state and stopped acting “crazy.”

“We thought we did the experiment the wrong way,” McAllister said of the overwhelming results.

However, their results proved to be consisted.

“I told Sean, ‘Maybe your drug is working through my gene,’ ” Desprez said.

What the researchers have discovered thus far in their research is that CBD turns off the overexpression of ID-1, which prevents it from traveling to foreign tissues. Thus, the metastasization – cancer’s fatal ability – is blocked.

In the wake of their positive results, the doctors were forced to emphasize that the CBD will only work in the presence of high levels of ID-1 and these do not include all cancerous tumors but, rather, aggressive, metastatic cells. High levels have been found in leukemia, colorectal, pancreatic, lung, ovarian, brain and other cancers.”
Read more: http://www.irishcentral.com/news/Scientists-believe-marijuana-compound-could-fight-cancer-170689736.html#ixzz29rQbc2oS

Endocannabinoid system: An overview of its potential in current medical practice.

Abstract

“The endocannabinoid system (ECS) is a lipid signalling system, comprising of the endogenous cannabis-like ligands (endocannabinoids) anandamide (AEA) and 2-arachidonoylglycerol (2-AG), which derive from arachidonic acid. These bind to a family of G-protein-coupled receptors, called CB1 and CB2. The cannabinoid receptor 1 (CB1R) is distributed in brain areas associated with motor control, emotional responses, motivated behaviour and energy homeostasis. In the periphery, the same receptor is expressed in the adipose tissue, pancreas, liver, GI tract, skeletal muscles, heart and the reproduction system. The CB2R is mainly expressed in the immune system regulating its functions. Endocannabinoids are synthesized and released upon demand in a receptor-dependent way. They act as retrograde signalling messengers in GABAergic and glutamatergic synapses and as modulators of postsynaptic transmission, interacting with other neurotransmitters. Endocannabinoids are transported into cells by a specific uptake system and degraded by the enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). The ECS is involved in various pathophysiological conditions in central and peripheral tissues. It is implicated in the hormonal regulation of food intake, cardiovascular, gastrointestinal, immune, behavioral, antiproliferative and mammalian reproduction functions. Recent advances have correlated the ECS with drug addiction and alcoholism. The growing number of preclinical and clinical data on ECS modulators is bound to result in novel therapeutic approaches for a number of diseases currently treated inadequately. The ECS dysregulation has been correlated to obesity and metabolic syndrome pathogenesis. Rimonabant is the first CB1 blocker launched to treat cardiometabolic risk factors in obese and overweight patients. Phase III clinical trials showed the drug’s ability to regulate intra-abdominal fat tissue levels, lipidemic, glycemic and inflammatory parameters. However, safety conerns have led to its withrawal. The role of endocannabinoids in mammalian reproduction is an emerging research area given their implication in fertilization, preimplantation embryo and spermatogenesis. The relevant preclinical data on endocannabinoid signalling open up new perspectives as a target to improve infertility and reproductive health in humans.”

http://www.ncbi.nlm.nih.gov/pubmed/19675519

[The endocannabinoid system as a target for the development of new drugs for cancer therapy].

Image result for recenti progressi in medicina

“Studies on the main bioactive components of Cannabis sativa, the cannabinoids, and particularly delta 9-tetrahydrocannabinol (THC), led to the discovery of a new endogenous signalling system that controls several physiological and pathological conditions: the endocannabinoid system. This comprises the cannabinoid receptors, their endogenous agonists–the endocannabinoids–and proteins for endocannabinoid biosynthesis and inactivation.

Recently, evidence has accumulated indicating that stimulation of cannabinoid receptors by either THC or the endocannabinoids influence the intracellular events controlling the proliferation and apoptosis of numerous types of cancer cells, thereby leading to anti-tumour effects both in vitro and in vivo.

This evidence is reviewed here and suggests that future anti-cancer therapy might be developed from our knowledge of how the endocannabinoid system controls the growth and metastasis of malignant cells.”

http://www.ncbi.nlm.nih.gov/pubmed/12723496

Endocannabinoid system modulation in cancer biology and therapy.

Cover image

“The discovery of the endocannabinoid system and the recognition of its potential impact in a plethora of pathological conditions, led to the development of therapeutic agents related to either the stimulation or antagonism of CB1 and CB2 cannabinoid receptors, the majority of which are actually tested in preclinical studies for the pharmacotherapy of several diseases. Endocannabinoid-related agents have been reported to affect multiple signaling pathways and biological processes involved in the development of cancer, displaying an interesting anti-proliferative, pro-apoptotic, anti-angiogenic and anti-metastatic activity both in vitro and in vivo in several models of cancer. Emerging evidence suggests that agonists of cannabinoid receptors, which share the useful property to discern between tumor cells and their non-transformed counterparts, could represent novel tumor-selective tools to treat cancer in addition to their already exploited use as palliative drugs to treat chemotherapy-induced nausea, pain and anorexia/weight loss in cancer patients. The aim of this review is to evidence and update the recent emerging knowledge about the role of the endocannabinoid system in cancer biology and the potentiality of its modulation in cancer therapy.”  http://www.ncbi.nlm.nih.gov/pubmed/19559362

http://www.sciencedirect.com/science/article/pii/S1043661809000863

Changes in the Endocannabinoid System May Give Insight into new and Effective Treatments for Cancer

Logo of nihpa

“The endocannabinoid system comprises specific cannabinoid receptors such as Cb1 and Cb2, the endogenous ligands (anandamide and 2-arachidonyl glycerol among others) and the proteins responsible for their synthesis and degradation. This system has become the focus of research in recent years because of its potential therapeutic value several disease states. The following review describes our current knowledge of the changes that occur in the endocannabinoid system during carcinogenesis and then focuses on the effects of anandamide on various aspects of the carcinogenic process such as growth, migration, and angiogenesis in tumors from various origins.

Marijuana and its derivatives have been used in medicine for centuries, however, it was not until the isolation of the psychoactive component of Cannabis sativa (Δ9-tetrahydrocannabinol; Δ9-THC) and the subsequent discovery of the endogenous cannabinoid signaling system that research into the therapeutic value of this system reemerged. Ongoing research is determining that regulation of the endocannabinoid system may be effective in the treatment of pain (Calignano et al., 1998; Manzanares et al., 1999), glaucoma (Voth and Schwartz, 1997), and neurodegenerative disorders such as Parkinson’s disease (Piomelli et al., 2000) and multiple sclerosis (Baker et al., 2000). In addition, cannabinoids might be effective anti-tumoral agents because of their ability to inhibit the growth of various types of cancer cell lines in culture (De Petrocellis et al., 1998; Ruiz et al., 1999; Sanchez et al., 1998, 2001) and in laboratory animals (Galve-Roperh et al., 2000).

In conclusion, the endocannabinoid system exerts a myriad of effects on tumor cell growth, progression, angiogenesis, and migration. With a notable few exceptions, targeting the endocannabinoid system with agents that activate cannabinoid receptors or increase the endogenous levels of AEA may prove to have therapeutic benefit in the treatment of various cancers. Further studies into the downstream consequences of AEA treatment are required and may illuminate other potential therapeutic targets.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2791688/