Transcriptomic Alterations Induced by Tetrahydrocannabinol in SIV/HIV Infection: A Systematic Review

pubmed logo

“Given the high prevalence of cannabis use among people with HIV (PWH) and its potential to modulate immune responses and reduce inflammation, this systematic review examines preclinical evidence on how tetrahydrocannabinol (THC), a key compound in cannabis, affects gene and micro-RNA expression in simian immunodeficiency virus (SIV)-infected macaques and HIV-infected human cells.

Through a comprehensive search, 19 studies were identified, primarily involving SIV-infected macaques, with a pooled sample size of 176, though methodological quality varied across the studies. Pathway analysis of differentially expressed genes (DEGs) and miRNAs associated with THC revealed enrichment in pathways related to inflammation, epithelial cell proliferation, and adhesion. Notably, some DEGs were targets of the differentially expressed miRNAs, suggesting that epigenetic regulation may contribute to THC’s effects on gene function.

These findings indicate that THC may help mitigate chronic immune activation in HIV infection by altering gene and miRNA expression, suggesting its potential immunomodulatory role. However, the evidence is constrained by small sample sizes and inconsistencies across studies. Further research employing advanced methodologies and larger cohorts is essential to confirm THC’s potential as a complementary therapy for PWH and fully elucidate the underlying mechanisms, which could inform targeted interventions to harness its immunomodulatory effects.”

https://pubmed.ncbi.nlm.nih.gov/40141240/

https://www.mdpi.com/1422-0067/26/6/2598

Cannabis Use in HIV: Impact on Inflammation, Immunity and the Microbiome

pubmed logo

“Purpose of review: This review explores how cannabis impacts the gut microbiome, immune system, and ART outcomes in people with HIV (PWH). Given the increasing prevalence of cannabis use among PWH, we investigated its potential to reduce chronic inflammation and enhance gut health, both of which can influence HIV pathogenesis.

Recent findings: Cannabis has immunomodulatory and anti-inflammatory effects, including reducing systemic inflammatory biomarkers (such as MCP-1 and IP-10) and improving gut barrier integrity through increased short-chain fatty acid (SCFA) production.

Studies have shown that cannabis use is associated with increased gut mucosal immunity, decreased immune activation, and a unique microbiome composition. Preliminary evidence indicates that cannabis may influence HIV reservoirs, although the results remain inconclusive.

Cannabis shows promise in managing inflammation, gut dysbiosis, and immune dysfunction in PWH. However, its effects on HIV reservoirs, adherence to antiretroviral therapy, and long-term outcomes need further investigation through rigorous clinical trials using standardized formulations.”

https://pubmed.ncbi.nlm.nih.gov/39984806/

https://link.springer.com/article/10.1007/s11904-025-00729-0

Cannabis Use and Cannabidiol Modulate HIV-Induced Alterations in TREM2 Expression: Implications for Age-Related Neuropathogenesis

pubmed logo

“Triggering receptor expressed on myeloid cells 2 (TREM2) is involved in neuroinflammation and HIV-associated neurocognitive impairment (NCI). People with HIV (PWH) using cannabis exhibit lower inflammation and neurological disorders. We hypothesized that TREM2 dysfunction mediates HIV neuropathogenesis and can be reversed by cannabinoids. EcoHIV-infected wildtype (WT) and TREM2R47H mutant mice were used to study HIV’s impact on TREM2 and behavior.

TREM2 and related gene expressions were examined in monocyte-derived macrophages (MDMs) from PWH (n = 42) and people without HIV (PWoH; n = 19) with varying cannabis use via RNA sequencing and qPCR. Differences in membrane-bound and soluble TREM2 (sTREM2) were evaluated using immunocytochemistry (ICC) and ELISA. EcoHIV increased immature and C-terminal fragment forms of TREM2 in WT mice but not in TREM2R47H mice, with increased IBA1 protein in TREM2R47H hippocampi, correlating with worse memory test performance. TREM2 mRNA levels increased with age in PWoH but not in PWH.

Cannabidiol (CBD) treatment increased TREM2 mRNA alone and with IL1β. RNA-seq showed the upregulation of TREM2-related transcripts in cannabis-using PWH compared to naïve controls. IL1β increased sTREM2 and reduced membrane-bound TREM2, effects partially reversed by CBD. These findings suggest HIV affects TREM2 expression modulated by cannabis and CBD, offering insights for therapeutic strategies.”

https://pubmed.ncbi.nlm.nih.gov/39459844/

“Altogether, results from this study underscore the potential of TREM2 as a therapeutic target for the treatment of HAND. Further research is warranted to elucidate the specific mechanisms underlying these interactions and to explore potential therapeutic strategies targeting TREM2 and cannabinoid signaling pathways in neuroinflammatory diseases.”

https://www.mdpi.com/1999-4915/16/10/1509

Cannabinoids shift the basal ganglia miRNA m6A methylation profile towards an anti-inflammatory phenotype in SIV-infected Rhesus macaques

pubmed logo

“Epitranscriptomic modifications modulate diverse biological processes, such as regulation of gene expression, abundance, location and function. In particular, N6-methyladenosine (m6A) methylation has been shown to regulate various disease processes, including cancer and inflammation. While there is evidence that m6A modification is functionally relevant in neural development and differentiation, the role of m6A modification in HIV neuropathogenesis is unknown.

Here, we identified direct m6A modifications in miRNAs from BG tissues of Rhesus Monkeys (RMs) that were either vehicle-treated uninfected (VEH), SIV-infected combination anti-retroviral therapy (cART) treated (VEH/SIV/cART), or THC:CBD treated VEH/SIV/cART (THC:CBD/SIV/cART) RMs.

We detected m6A modifications across all BG tissues. SIV infection promoted an overall hypomethylated m6A profile. While the overall hypomethylated m6A profile was not significantly impacted by THC:CBD treatment, specific miRNAs, particularly those predicted to target proinflammatory genes showed markedly reduced m6A methylation levels compared to the VEH treated RMs. Additionally, we found that specific BG tissue miRNAs bearing m6A epi-transcriptomic marks were also transferred to BG-derived extracellular vesicles (EVs). Mechanistically, we identified the DRACH motif of the seed region of miR-194-5p to be significantly m6A hypomethylated, which was predicted to directly target STAT1, an important interferon-activated transcription factor known to drive neuroinflammation, in diseases ranging from Alzheimer to Parkinson and Huntington disease.

Notably, THC:CBD treatments significantly reduced m6A methylation of 43 miRNA species directly involved in regulating CNS network genes, thus providing a possible mechanist explanation on the beneficial effects of THC:CBD treatments noted in several disease involving neuroinflammation.

Our findings also underscore the need for investigating the qualitative, posttranscriptional modification changes in the RNA profiles along with the more traditional, qualitative alterations in pathological conditions or after various treatment regimens.”

https://pubmed.ncbi.nlm.nih.gov/39416016/

https://www.biorxiv.org/content/10.1101/2024.10.11.614514v1

Feasibility of a Randomized, Interventional Pilot Clinical Study of Oral Cannabinoids in People with HIV on Antiretroviral Therapy: CTNPT 028

pubmed logo

“Cannabis-based medicines (CBMs) could help reduce systemic inflammation in people with HIV (PWH).

In a prospective, randomized pilot study we enrolled participants from August 2021-April 2022 with HIV, aged ≥18 and on antiretroviral therapy and randomly assigned them to cannabidiol (CBD) ± Δ9-tetrahydrocannabinol (THC) capsules for 12 weeks with the primary objective being to assess safety and tolerability.

Here we report on timeliness to study initiation, enrolment, compliance and retention rates. The target sample size was not reached. Two hundred and five individuals were approached, and 10 consented and were randomized; the rest refused (reasons: cannabis-related stigma/discomfort; too many study visits/insufficient time; unwillingness to undergo a “washout period” for three weeks) or were not eligible. The age of those randomized was 58 years (IQR 55-62); 80% were male. Only three met all criteria (30% enrolment compliance); seven were enrolled with minor protocol deviations.

Compliance was excellent (100%). Eight (80%) participants completed the study; two (20%) were withdrawn for safety reasons (transaminitis and aggravation of pre-existing anemia). Time to study initiation and recruitment were the most challenging aspects. Ongoing work is required to reduce stigma related to CBMs. Future studies should find a balance between the requirements for safety monitoring and frequency of study visits.”

https://pubmed.ncbi.nlm.nih.gov/39063999/

“Recruitment was the most challenging aspect of conducting this study, with a low consent rate. Ongoing work is required to reduce stigma related to CBMs.”

https://www.mdpi.com/2075-4426/14/7/745

Antiviral Activities of Cannabis

Book cover

“Despite the history of scientific evidence regarding plants and their products in prophylactics and therapeutics, their applications in healthcare systems are only now gaining momentum.

Plants contain bioactive compounds that target certain viruses to cure or prevent viral diseases and infections.

They provide a rich resource of antiviral drugs. Identifying the antiviral mechanisms in plants has shed light on where they interact with the life cycle of viruses, such as viral entry, replication, assembly, and release.”

https://link.springer.com/chapter/10.1007/978-3-031-35155-6_13

Oral Cannabidiol Treatment Is Associated with an Anti-Inflammatory Gene Expression Signature in Myeloid Cells of People Living with HIV

pubmed logo

“Introduction: HIV-related comorbidities appear to be related to chronic inflammation, a condition characterizing people living with HIV (PLWH). Prior work indicates that cannabidiol (CBD) might reduce inflammation; however, the genetics underpinning of this effect are not well investigated. Our main objective is to detect gene expression alterations in human peripheral blood mononuclear cells (PBMCs) from PLWH after at least 1 month of CBD treatment. 

Materials and Methods: We analyzed ∼41,000 PBMCs from three PLWH at baseline and after CBD treatment (27-60 days) through single-cell RNA sequencing. 

Results: We obtained a coherent signature, characterized by an anti-inflammatory activity, of differentially expressed genes in myeloid cells. 

Conclusions: Our study shows how CBD is associated with alterations of gene expression in myeloid cells after CBD treatment.”

https://pubmed.ncbi.nlm.nih.gov/38252549/

https://www.liebertpub.com/doi/10.1089/can.2023.0139

Cannabis Use Associates With Reduced Proviral Burden and Inflammatory Cytokine in Tissues From Men With Clade C HIV-1 on Suppressive Antiretroviral Therapy

pubmed logo

“Background: Human immunodeficiency virus 1 (HIV-1) tissue reservoirs remain the main obstacle against an HIV cure. Limited information exists regarding cannabis’s effects on HIV-1 infections in vivo, and the impact of cannabis use on HIV-1 parenchymal tissue reservoirs is unexplored.

Methods: To investigate whether cannabis use alters HIV-1 tissue reservoirs, we systematically collected 21 postmortem brain and peripheral tissues from 20 men with subtype C HIV-1 and with suppressed viral load enrolled in Zambia, 10 of whom tested positive for cannabis use. The tissue distribution and copies of subtype C HIV-1 LTR, gag, env DNA and RNA, and the relative mRNA levels of cytokines IL-1β, IL-6, IL-10, and TGF-β1 were quantified using PCR-based approaches. Utilizing generalized linear mixed models we compared persons with HIV-1 and suppressed viral load, with and without cannabis use.

Results: The odds of tissues harboring HIV-1 DNA and the viral DNA copies in those tissues were significantly lower in persons using cannabis. Moreover, the transcription levels of proinflammatory cytokines IL-1β and IL-6 in lymphoid tissues of persons using cannabis were also significantly lower.

Conclusions: Our findings suggested that cannabis use is associated with reduced sizes and inflammatory cytokine expression of subtype C HIV-1 reservoirs in men with suppressed viral load.”

https://pubmed.ncbi.nlm.nih.gov/38243412/

https://academic.oup.com/jid/advance-article-abstract/doi/10.1093/infdis/jiad575/7577694?redirectedFrom=fulltext&login=false

The Use of CBD and Its Synthetic Analog HU308 in HIV-1-Infected Myeloid Cells

pubmed logo

“Currently, there is no cure for human immunodeficiency virus type 1 (HIV-1) infection. However, combined antiretroviral therapy (cART) aids in viral latency and prevents the progression of HIV-1 infection into acquired immunodeficiency syndrome (AIDS). cART has extended many lives, but people living with HIV-1 (PLWH) face lifelong ailments such as HIV-associated neurocognitive disorders (HAND) that range from asymptomatic HAND to HIV-1-associated dementia. HAND has been attributed to chronic inflammation and low-level infection within the central nervous system (CNS) caused by proinflammatory cytokines and viral products. These molecules are shuttled into the CNS within extracellular vesicles (EVs), lipid bound nanoparticles, and are released from cells as a form of intercellular communication. This study investigates the impact of cannabidiol (CBD), as a promising and potential therapeutic for HAND patients, and a similar synthetic molecule, HU308, on the EVs released from HIV-1-infected myeloid cells as well as HIV-1-infected 3D neurospheres. The data shows that both CBD and HU308 decrease non-coding and coding viral RNA (TAR and env) as well as proinflammatory cytokines as IL-1β and TNF-α mRNA. This decrease in viral RNA occurs in in vitro differentiated primary macrophages, in EVs released from HIV-1-infected cells monocytes, and infected neurospheres. Furthermore, a 3D neurosphere model shows an overall decrease in proinflammatory mRNA with HU308. Finally, using a humanized mouse model of HIV-1 infection, plasma viral RNA was shown to significantly decrease with HU308 alone and was most effective in combination with cART, even when compared to the typical cART treatment. Overall, CBD or HU308 may be a viable option to decrease EV release and associated cytokines which would dampen the virus spread and may be used in effective treatment of HAND in combination with cART.”

https://pubmed.ncbi.nlm.nih.gov/37631062/

“Taken together, these data indicate that HU308 or CBD decrease viral RNA, and that HU308 and, to some extent, CBD decrease proinflammatory cytokine mRNA released in EVs. Therefore, either CBD or HU308 could potentially be used in combination with cART to target both pro-inflammatory and viral gene expression for the prevention of HAND.”

https://www.mdpi.com/1424-8247/16/8/1147

Anti-inflammatory effects of CBD in human microglial cell line infected with HIV-1

pubmed logo

“Human immunodeficiency virus (HIV) infection is associated with a chronic inflammatory stage and continuous activation of inflammasome pathway. We studied the anti-inflammatory effects of the compound cannabidiol (CBD) in comparison with Δ (9)-tetrahydrocannabinol [Δ(9)-THC] in human microglial cells (HC69.5) infected with HIV.

Our results showed that CBD reduced the production of various inflammatory cytokines and chemokines such as MIF, SERPIN E1, IL-6, IL-8, GM-CSF, MCP-1, CXCL1, CXCL10, and IL-1 β compared to Δ(9)-THC treatment. In addition, CBD led to the deactivation of caspase 1, reduced NLRP3 gene expression which play a crucial role in the inflammasome cascade. Furthermore, CBD significantly reduced the expression of HIV.

Our study demonstrated that CBD has anti-inflammatory properties and exhibits significant therapeutic potential against HIV-1 infections and neuroinflammation.”

https://pubmed.ncbi.nlm.nih.gov/37147420/

https://www.nature.com/articles/s41598-023-32927-4