Marijuana Relieves HIV Nerve Pain

“Smoking marijuana effectively relieves chronic HIV-associated nerve pain, including aching, painful numbness, and burning, according to a study published in the February 13, 2007, issue of Neurology®, the scientific journal of the American Academy of Neurology.

For the study, 50 people with HIV-associated sensory neuropathy, the most common HIV nerve disorder, were admitted to a California hospital and randomly assigned to smoke either marijuana or identical placebo cigarettes three times a day for five days.

The study found people who smoked marijuana reduced their daily nerve pain by 34 percent compared to 17 percent in the placebo group.

“Smoking marijuana was well tolerated and effectively relieved chronic nerve pain from HIV-associated sensory neuropathy,” said study author Donald Abrams, MD, with San Francisco General Hospital in San Francisco, California. “Our findings show the amount of relief from smoking marijuana is comparable to relief provided by oral drugs currently used for chronic nerve pain.”

Abrams says while some HIV patients with chronic nerve pain are able to take anticonvulsant drugs, such as lamotrigine and gabapentin, to ease pain, some patients don’t respond well to these drugs. He says that’s why there’s heightened interest in evaluating marijuana as a treatment for chronic nerve pain.

The study also found the first marijuana cigarette reduced chronic pain by an average of 72 percent versus 15 percent with placebo. And more than half of the people who smoked marijuana reported more than a 30-percent reduction in pain compared to 24 percent in the placebo group.

Participants in the study reported no serious side effects.

Researchers say similar results were reported in two recent placebo-controlled studies of marijuana-related therapies for nerve pain associated with multiple sclerosis.

The study was supported by the University of California Center for Medicinal Cannabis Research and conducted at the National Institutes of Health-funded General Clinical Research Center at San Francisco General Hospital.”

http://www.medicalnewstoday.com/releases/63333.php

Study: Smoking Pot May Ease Chronic Pain

By Amanda Gardner
smoking pot chronic pain 200x150 Study: Smoking Pot May Ease Chronic Pain

 “People with chronic pain who aren’t getting enough relief from medications may be able to ease their pain by smoking small amounts of marijuana, a new study suggests.

Marijuana also helps pain patients fall asleep more easily and sleep more soundly, according to the report, one of the first real-world studies to look at the medicinal use of smoked marijuana. Most previous research has used extracts of tetrahydrocannabinol (THC), the active ingredient in the cannabis plant.

“This is the first time anyone has done a trial of smoked cannabis on an outpatient basis,” says the lead researcher, Mark Ware, MBBS, the director of clinical research at McGill University’s Alan Edwards Centre for Research on Pain, in Montreal.

The study included 21 adults with nervous-system (neuropathic) pain stemming from surgery, accidents, or other trauma. Fourteen of the participants were on short-term disability or permanently disabled. All of them had tried marijuana before, but none were current or habitual smokers.

“They were not experienced marijuana users,” Ware says. “They came because they had severe pain that was not responding to any conventional treatment.”

Each patient in the study smoked four different strengths of marijuana over a period of 56 days. The THC potency ranged from 9.4%—the strongest dose the researchers could obtain legally—to 0%, a “placebo” pot that looked and tasted like the real thing but was stripped of THC. (By comparison, the
strongest marijuana available on the street has a THC potency of about 15%, Ware estimates.)

The participants—who weren’t told which strength they were getting—were instructed to smoke a thimbleful (25 milligrams) from a small pipe three times a day for five days. After a nine-day break, they switched to a different potency.

The highest dose of THC yielded the best results. It lessened pain and improved sleep more effectively than the placebo and the two medium-strength doses (which produced no measurable relief), and it also reduced anxiety and depression. The effects lasted for about 90 minutes to two hours, according to the study.”

Read more: http://news.health.com/2010/08/30/marijuana-chronic-pain/

From cannabis to the endocannabinoid system: refocussing attention on potential clinical benefits.

Image result for West Indian Med J

“Cannabis sativa is one of the oldest herbal remedies known to man. Over the past four thousand years, it has been used for the treatment of numerous diseases but due to its psychoactive properties, its current medicinal usage is highly restricted. In this review, we seek to highlight advances made over the last forty years in the understanding of the mechanisms responsible for the effects of cannabis on the human body and how these can potentially be utilized in clinical practice. During this time, the primary active ingredients in cannabis have been isolated, specific cannabinoid receptors have been discovered and at least five endogenous cannabinoid neurotransmitters (endocannabinoids) have been identified. Together, these form the framework of a complex endocannabinoid signalling system that has widespread distribution in the body and plays a role in regulating numerous physiological processes within the body. Cannabinoid ligands are therefore thought to display considerable therapeutic potential and the drive to develop compounds that can be targeted to specific neuronal systems at low enough doses so as to eliminate cognitive side effects remains the ‘holy grail’ of endocannabinoid research.”

http://www.ncbi.nlm.nih.gov/pubmed/23155985

Evaluation of oral cannabinoid-containing medications for the management of interferon and ribavirin-induced anorexia, nausea and weight loss in patients treated for chronic hepatitis C virus

  “The systemic and cognitive side effects of hepatitis C virus (HCV) therapy may be incapacitating, necessitating dose reductions or abandonment of therapy. Oral cannabinoid-containing medications (OCs) ameliorate chemotherapy-induced nausea and vomiting, as well as AIDS wasting syndrome. The efficacy of OCs in managing HCV treatment-related side effects is unknown.”

 

“Although formal studies are lacking, there is anecdotal evidence that cannabis may be beneficial by alleviating common side effects associated with interferon-ribavirin, including anorexia, nausea, weight loss and insomnia. Despite the potential benefits of cannabis, concerns related to the long-term medical complications of inhaled cannabis use and the inability to legally obtain this product limit the use of it as a therapeutic intervention.”

“Oral cannabinoid-containing medications (OCs) have multiple potential therapeutic uses due to their analgesic, antiemetic, anticonvulsant, bronchodilatory and anti-inflammatory effects. They have been shown in clinical trials to ameliorate chemotherapy-induced nausea, to benefit those with AIDS wasting syndrome and to reduce spasticity in multiple sclerosis patients.”

“CONCLUSIONS:

The present retrospective cohort analysis found that OC use is often effective in managing HCV treatment-related symptoms that contribute to weight loss, and may stabilize weight decline once initiated.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2662895/

Naturally occurring and related synthetic cannabinoids and their potential therapeutic applications.

Abstract

“Naturally occurring cannabinoids (phytocannabinoids) are biosynthetically related terpenophenolic compounds uniquely produced by the highly variable plant, Cannabis sativa L. Natural and synthetic cannabinoids have been extensively studied since the discovery that the psychotropic effects of cannabis are mainly due to Delta(9)-THC. However, cannabinoids exert pharmacological actions on other biological systems such as the cardiovascular, immune and endocrine systems. Most of these effects have been attributed to the ability of these compounds to interact with the cannabinoid CB1 and CB2 receptors. The FDA approval of Marinol, a product containing synthetic Delta(9)-THC (dronabinol), in 1985 for the control of nausea and vomiting in cancer patients receiving chemotherapy, and in 1992 as an appetite stimulant for AIDS patients, has further intensified the research interest in these compounds. This article reviews patents (2003-2007) that describe methods for isolation of cannabinoids from cannabis, chemical and chromatographic methods for their purification, synthesis, and potential therapeutic applications of these compounds.”

http://www.ncbi.nlm.nih.gov/pubmed/19519560

Recent advantages in cannabinoid research.

Abstract

“Although the active component of cannabis Delta9-THC was isolated by our group 35 years ago, until recently its mode of action remained obscure. In the last decade it was established that Delta9-THC acts through specific receptors – CB1 and CB2 – and mimics the physiological activity of endogenous cannabinoids of two types, the best known representatives being arachidonoylethanolamide (anandamide) and 2-arachidonoylglycerol (2-AG). THC is officially used against vomiting caused by cancer chemotherapy and for enhancing appetite, particularly in AIDS patients. Illegally, usually by smoking marijuana, it is used for ameliorating the symptoms of multiple sclerosis, against pain, and in a variety of other diseases. A synthetic cannabinoid, HU-211, is in advanced clinical tests against brain damage caused by closed head injury. It may prove to be valuable against stroke and other neurological diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/10575284

Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities.

Philosophical Transactions of the Royal Society B: Biological Sciences: 367 (1607)

“Human tissues express cannabinoid CB(1) and CB(2) receptors that can be activated by endogenously released ‘endocannabinoids’ or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB(1)/CB(2) receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ(9)-tetrahydrocannabinol (Δ(9)-THC)) and Sativex (Δ(9)-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson’s and Huntington’s diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB(2) receptors, and/or (v) adjunctive ‘multi-targeting’.”  https://www.ncbi.nlm.nih.gov/pubmed/23108552

“Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities”  http://rstb.royalsocietypublishing.org/content/367/1607/3353.long

Cannabinoids in medicine: A review of their therapeutic potential.

“In order to assess the current knowledge on the therapeutic potential of cannabinoids, a meta-analysis was performed through Medline and PubMed up to July 1, 2005. The key words used were cannabis, marijuana, marihuana, hashish, hashich, haschich, cannabinoids, tetrahydrocannabinol, THC, dronabinol, nabilone, levonantradol, randomised, randomized, double-blind, simple blind, placebo-controlled, and human. The research also included the reports and reviews published in English, French and Spanish.

For the final selection, only properly controlled clinical trials were retained, thus open-label studies were excluded. Seventy-two controlled studies evaluating the therapeutic effects of cannabinoids were identified. For each clinical trial, the country where the project was held, the number of patients assessed, the type of study and comparisons done, the products and the dosages used, their efficacy and their adverse effects are described.

 Cannabinoids present an interesting therapeutic potential as antiemetics, appetite stimulants in debilitating diseases (cancer and AIDS), analgesics, and in the treatment of multiple sclerosis, spinal cord injuries, Tourette’s syndrome, epilepsy and glaucoma.”

http://www.ncbi.nlm.nih.gov/pubmed/16540272

Therapeutic aspects of cannabis and cannabinoids

The British Journal of Psychiatry

“HISTORY OF THERAPEUTIC USE

The first formal report of cannabis as a medicine appeared in China nearly 5000 years ago when it was recommended for malaria, constipation, rheumatic pains and childbirth and, mixed with wine, as a surgical analgesic. There are subsequent records of its use throughout Asia, the Middle East, Southern Africa and South America. Accounts by Pliny, Dioscorides and Galen remained influential in European medicine for 16 centuries.”

“It was not until the 19th century that cannabis became a mainstream medicine in Britain. W. B. O’Shaughnessy, an Irish scientist and physician, observed its use in India as an analgesic, anticonvulsant, anti-spasmodic, anti-emetic and hypnotic. After toxicity experiments on goats and dogs, he gave it to patients and was impressed with its muscle-relaxant, anticonvulsant and analgesic properties, and recorded its use-fulness as an anti-emetic.”

“After these observations were published in 1842, medicinal use of cannabis expanded rapidly. It soon became available ‘over the counter’ in pharmacies and by 1854 it had found its way into the United States Dispensatory. The American market became flooded with dozens of cannabis-containing home remedies.”

“Cannabis was outlawed in 1928 by ratification of the 1925 Geneva Convention on the manufacture, sale and movement of dangerous drugs. Prescription remained possible until final prohibition under the 1971 Misuse of Drugs Act, against the advice of the Advisory Committee on Drug Dependence.”

“In the USA, medical use was effectively ruled out by the Marijuana Tax Act 1937. This ruling has been under almost constant legal challenge and many special dispensations were made between 1976 and 1992 for individuals to receive ‘compassionate reefers’. Although this loophole has been closed, a 1996 California state law permits cultivation or consumption of cannabis for medical purposes, if a doctor provides a written endorsement. Similar arrangements apply in Italy and Canberra, Australia.”

“Results and Conclusions Cannabis and some cannabinoids are effective anti-emetics and analgesics and reduce intra-ocular pressure. There is evidence of symptom relief and improved well-being in selected neurological conditions, AIDS and certain cancers. Cannabinoids may reduce anxiety and improve sleep. Anticonvulsant activity requires clarification. Other properties identified by basic research await evaluation. Standard treatments for many relevant disorders are unsatisfactory. Cannabis is safe in overdose but often produces unwanted effects, typically sedation, intoxication, clumsiness, dizziness, dry mouth, lowered blood pressure or increased heart rate. The discovery of specific receptors and natural ligands may lead to drug developments. Research is needed to optimise dose and route of administration, quantify therapeutic and adverse effects, and examine interactions.”

http://bjp.rcpsych.org/content/178/2/107.long

The therapeutic potential of novel cannabinoid receptors.

Cover image

“Cannabinoids produce a plethora of biological effects, including the modulation of neuronal activity through the activation of CB(1) receptors and of immune responses through the activation of CB(2) receptors. The selective targeting of either of these two receptor subtypes has clear therapeutic value. Recent evidence indicates that some of the cannabinomimetic effects previously thought to be produced through CB(1) and/or CB(2) receptors, be they on neuronal activity, on the vasculature tone or immune responses, still persist despite the pharmacological blockade or genetic ablation of CB(1) and/or CB(2) receptors. This suggests that additional cannabinoid and cannabinoid-like receptors exist. Here we will review this evidence in the context of their therapeutic value and discuss their true belonging to the endocannabinoid signaling system.”  http://www.ncbi.nlm.nih.gov/pubmed/19248809

“The therapeutic potential of novel cannabinoid receptors”  http://www.sciencedirect.com/science/article/pii/S0163725809000266