Alterations in Brain Cannabinoid Receptor Levels Are Associated with HIV-Associated Neurocognitive Disorders in the ART Era: Implications for Therapeutic Strategies Targeting the Endocannabinoid System

viruses-logo“HIV-associated neurocognitive disorders (HAND) persist despite the advent of antiretroviral therapy (ART), suggesting underlying systemic and central nervous system (CNS) inflammatory mechanisms.

The endogenous cannabinoid receptors 1 and 2 (CB1 and CB2) modulate inflammatory gene expression and play an important role in maintaining neuronal homeostasis. Cannabis use is disproportionately high among people with HIV (PWH) and may provide a neuroprotective effect for those on ART due to its anti-inflammatory properties. However, expression profiles of CB1 and CB2 in the brains of PWH on ART with HAND have not been reported.

In this study, biochemical and immunohistochemical analyses were performed to determine CB1 and CB2 expression in the brain specimens of HAND donors.

Immunoblot revealed that CB1 and CB2 were differentially expressed in the frontal cortices of HAND brains compared to neurocognitively unimpaired (NUI) brains of PWH. CB1 expression levels negatively correlated with memory and information processing speed. CB1 was primarily localized to neuronal soma in HAND brains versus a more punctate distribution of neuronal processes in NUI brains. CB1 expression was increased in cells with glial morphology and showed increased colocalization with an astroglial marker.

These results suggest that targeting the endocannabinoid system may be a potential therapeutic strategy for HAND.”

https://pubmed.ncbi.nlm.nih.gov/34578323/

https://www.mdpi.com/1999-4915/13/9/1742

The Endocannabinoid System: A Potential Target for the Treatment of Various Diseases

ijms-logo“The Endocannabinoid System (ECS) is primarily responsible for maintaining homeostasis, a balance in internal environment (temperature, mood, and immune system) and energy input and output in living, biological systems.

In addition to regulating physiological processes, the ECS directly influences anxiety, feeding behaviour/appetite, emotional behaviour, depression, nervous functions, neurogenesis, neuroprotection, reward, cognition, learning, memory, pain sensation, fertility, pregnancy, and pre-and post-natal development.

The ECS is also involved in several pathophysiological diseases such as cancer, cardiovascular diseases, and neurodegenerative diseases. In recent years, genetic and pharmacological manipulation of the ECS has gained significant interest in medicine, research, and drug discovery and development.

The distribution of the components of the ECS system throughout the body, and the physiological/pathophysiological role of the ECS-signalling pathways in many diseases, all offer promising opportunities for the development of novel cannabinergic, cannabimimetic, and cannabinoid-based therapeutic drugs that genetically or pharmacologically modulate the ECS via inhibition of metabolic pathways and/or agonism or antagonism of the receptors of the ECS. This modulation results in the differential expression/activity of the components of the ECS that may be beneficial in the treatment of a number of diseases.

This manuscript in-depth review will investigate the potential of the ECS in the treatment of various diseases, and to put forth the suggestion that many of these secondary metabolites of Cannabis sativa L. (hereafter referred to as “C. sativa L.” or “medical cannabis”), may also have potential as lead compounds in the development of cannabinoid-based pharmaceuticals for a variety of diseases.”

https://pubmed.ncbi.nlm.nih.gov/34502379/

https://www.mdpi.com/1422-0067/22/17/9472

 

“Cannabis sativa L. as a Natural Drug Meeting the Criteria of a Multitarget Approach to Treatment”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7830475/

Cannabis and Inflammation in HIV: A Review of Human and Animal Studies

viruses-logo“Persistent inflammation occurs in people with HIV (PWH) and has many downstream adverse effects including myocardial infarction, neurocognitive impairment and death.

Because the proportion of people with HIV who use cannabis is high and cannabis may be anti-inflammatory, it is important to characterize the impact of cannabis use on inflammation specifically in PWH. We performed a selective, non-exhaustive review of the literature on the effects of cannabis on inflammation in PWH.

Research in this area suggests that cannabinoids are anti-inflammatory in the setting of HIV. Anti-inflammatory actions are mediated in many cases through effects on the endocannabinoid system (ECS) in the gut, and through stabilization of gut-blood barrier integrity. Cannabidiol may be particularly important as an anti-inflammatory cannabinoid. Cannabis may provide a beneficial intervention to reduce morbidity related to inflammation in PWH.”

https://pubmed.ncbi.nlm.nih.gov/34452386/

https://www.mdpi.com/1999-4915/13/8/1521

Targeting the endocannabinoid system for management of HIV-associated neuropathic pain: A systematic review

IBRO Neuroscience Reports“Human immunodeficiency virus (HIV) infection and antiretroviral therapy can independently induce HIV-associated neuropathic pain (HIV-NP).

Smoked cannabis has been reported to improve pain measures in patients with neuropathic pain.

Two clinical trials demonstrated greater efficacy of smoked cannabis over placebo in alleviating HIV-NP.

The available preclinical results suggest that targeting the ECS for prevention and treatment of HIV-NP is a plausible therapeutic option.

Clinical evidence shows that smoked cannabis alleviates HIV-NP.” 

https://pubmed.ncbi.nlm.nih.gov/34179865/

“Smoked cannabis has been shown to be effective for managing HIV-NP in two RCTs.”

https://www.sciencedirect.com/science/article/pii/S2667242121000051?via%3Dihub

Daily Cannabis Use is Associated With Lower CNS Inflammation in People With HIV

Journal of the International Neuropsychological Society“Recent cannabis exposure has been associated with lower rates of neurocognitive impairment in people with HIV (PWH). Cannabis’s anti-inflammatory properties may underlie this relationship by reducing chronic neuroinflammation in PWH.

This study examined relations between cannabis use and inflammatory biomarkers in cerebrospinal fluid (CSF) and plasma, and cognitive correlates of these biomarkers within a community-based sample of PWH.

Results: HIV+ daily cannabis users showed lower MCP-1 and IP-10 levels in CSF compared to HIV+ non-cannabis users (p = .015; p = .039) and were similar to HIV- non-cannabis users. Plasma biomarkers showed no differences by cannabis use. Among PWH, lower CSF MCP-1 and lower CSF IP-10 were associated with better learning performance (all ps < .05).

Conclusions: Current daily cannabis use was associated with lower levels of pro-inflammatory chemokines implicated in HIV pathogenesis and these chemokines were linked to the cognitive domain of learning which is commonly impaired in PWH. Cannabinoid-related reductions of MCP-1 and IP-10, if confirmed, suggest a role for medicinal cannabis in the mitigation of persistent inflammation and cognitive impacts of HIV.”

https://pubmed.ncbi.nlm.nih.gov/34261550/

https://www.cambridge.org/core/journals/journal-of-the-international-neuropsychological-society/article/abs/daily-cannabis-use-is-associated-with-lower-cns-inflammation-in-people-with-hiv/9A2960B21749A35F7490C06958B9A2B6

The neurocognitive effects of a past cannabis use disorder in a diverse sample of people living with HIV

 Publication Cover“People living with HIV (PLWH) report higher rates of cannabis use than the general population, a trend likely to continue in light of recent policy changes and the reported therapeutic benefits of cannabis for PLWH. Therefore, it is important to better understand cannabis-associated effects on neurocognition, especially as PLWH are at heightened risk for neurocognitive impairment.

This study aimed to elucidate the effects of a past cannabis use disorder on current neurocognition in a diverse sample of PLWH.

Compared to the past CUD- group, the past CUD+ group performed significantly better on tests of processing speed, visual learning and memory, and motor ability.

Findings suggest PLWH with past cannabis use have similar or better neurocognition across domains compared to PLWH without past use.”

https://pubmed.ncbi.nlm.nih.gov/32951441/

https://www.tandfonline.com/doi/abs/10.1080/09540121.2020.1822504?journalCode=caic20

Cannabis use is associated with greater total sleep time in middle-aged and older adults with and without HIV: A preliminary report utilizing digital health technologies

“Current literature on the effect of cannabis use on sleep quality is mixed, and few studies have used objectively-measured sleep measures or real-time sampling of cannabis use to examine this relationship.

The prevalence of cannabis use among older adults and persons living with HIV has increased in recent years, and poor sleep quality is elevated in these populations as well. However, research examining cannabis-sleep relationships in these populations is lacking. Thus, we aimed to examine the relationship between daily cannabis use and subsequent objectively-measured sleep quality in middle-aged and older adults with and without HIV.

In this pilot study, seventeen (11 HIV+, 6 HIV-) adults aged 50-70 who consumed cannabis completed four daily smartphone-based surveys for 14 days, in which they reported their cannabis use (yes/no) since the last survey. Participants also wore actigraphy watches during the 14-day period to objectively assess sleep quality (i.e., efficiency, total sleep time, and sleep fragmentation).

In linear mixed-effects models, cannabis use was significantly associated with greater subsequent total sleep time (β=0.56; p=0.046). Cannabis use was not related to a change in sleep efficiency (β=1.50; p=0.46) nor sleep fragmentation (β=0.846, p=0.756) on days with cannabis use versus days without cannabis use.

These preliminary results indicate cannabis use may have a positive effect on sleep duration in middle-aged and older adults. However, future studies with larger sample sizes that assess cannabis use in more detail (e.g., route of administration, dose, reason for use) are needed to further understand this relationship.”

https://pubmed.ncbi.nlm.nih.gov/32905460/

https://publications.sciences.ucf.edu/cannabis/index.php/Cannabis/article/view/59

Synergistic effects of HIV and marijuana use on functional brain network organization

Progress in Neuro-Psychopharmacology and Biological Psychiatry “HIV is associated with disruptions in cognition and brain function.

These results suggest that marijuana use in HIV may normalize disruptions in brain network organization observed in persons with HIV.”

https://pubmed.ncbi.nlm.nih.gov/32687963/

https://www.sciencedirect.com/science/article/abs/pii/S0278584620303560?via%3Dihub

Long Term Delta-9-tetrahydrocannabinol Administration Inhibits Proinflammatory Responses in Minor Salivary Glands of Chronically Simian Immunodeficieny Virus Infected Rhesus Macaques

 viruses-logo“HIV/SIV-associated oral mucosal disease/dysfunction (HAOMD) (gingivitis/periodontitis/salivary adenitis) represents a major comorbidity affecting HIV patients on anti-retroviral therapy.

Using a systems biology approach, we investigated molecular changes (mRNA/microRNA) underlying HAOMD and its modulation by phytocannabinoids (delta-9-tetrahydrocannabinol (∆9-THC)) in uninfected (n = 5) and SIV-infected rhesus macaques untreated (VEH-untreated/SIV; n = 7) or treated with vehicle (VEH/SIV; n = 3) or ∆9-THC (THC/SIV; n = 3).

Relative to controls, fewer mRNAs were upregulated in THC/SIV compared to VEH-untreated/SIV macaques. Gene enrichment analysis showed differential enrichment of biological functions involved in anti-viral defense, Type-I interferon, Toll-like receptor, RIG-1 and IL1R signaling in VEH-untreated/SIV macaques. We focused on the anti-ER-stress anterior gradient-2 (AGR2), epithelial barrier protecting and anti-dysbiotic WAP Four-Disulfide Core Domain-2 (WFDC2) and glucocorticoid-induced anti-inflammatory TSC22D3 (TSC22-domain family member-3) that were significantly downregulated in oropharyngeal mucosa (OPM) of VEH-untreated/SIV macaques.

All three proteins localized to minor salivary gland acini and secretory ducts and showed enhanced and reduced expression in OPM of THC/SIV and VEH/SIV macaques, respectively. Additionally, inflammation associated miR-21, miR-142-3p and miR-29b showed significantly higher expression in OPM of VEH-untreated/SIV macaques. TSC22D3 was validated as a target of miR-29b.

These preliminary translational findings suggest that phytocannabinoids may safely and effectively reduce oral inflammatory responses in HIV/SIV and other (autoimmune) diseases.”

https://pubmed.ncbi.nlm.nih.gov/32630206/

https://www.mdpi.com/1999-4915/12/7/713

Recent Cannabis Use in HIV Is Associated With Reduced Inflammatory Markers in CSF and Blood

 Home“Objective: To determine whether cannabis may reduce HIV-related persistent inflammation, we evaluated the relationship of cannabis use in people with HIV (PWH) to inflammatory cytokines in CSF and blood plasma.

Conclusions: Recent cannabis use was associated with lower levels of inflammatory biomarkers, both in CSF and blood, but in different patterns. These results are consistent with compartmentalization of immune effects of cannabis. The principal active components of cannabis are highly lipid soluble and sequestered in brain tissue; thus, our findings are consistent with specific anti-neuroinflammatory effects that may benefit HIV neurologic dysfunction.”

https://pubmed.ncbi.nlm.nih.gov/32554630/

https://nn.neurology.org/content/7/5/e809