Distinct inflammatory profiles in HIV-infected individuals under ART using cannabis, cocaine or cannabis plus cocaine.

Image result for AIDS. Publish Ahead of Print():, JUNE 2019

“Cannabis use lowered the percentages of inflammatory, non-classical, activated-classic, and activated-inflammatory monocytes.

In HIV infection the use of cannabis induces predominantly an anti-inflammatory profile.

The use of cocaine and cannabis-plus-cocaine showed a mixed pro- and anti-inflammatory profile, with predominance of inflammatory status.”

https://www.ncbi.nlm.nih.gov/pubmed/31259759

https://insights.ovid.com/crossref?an=00002030-900000000-96891

Cannabinoid Attenuation of Intestinal Inflammation in Chronic SIV-Infected Rhesus Macaques Involves T Cell Modulation and Differential Expression of Micro-RNAs and Pro-inflammatory Genes.

Image result for frontiers in immunology

“Cannabis use is frequent in HIV-infected individuals for its appetite stimulation and anti-inflammatory effects. To identify the underlying molecular mechanisms associated with these effects, we simultaneously profiled micro-RNA (miRNA) and mRNA expression in the colon of chronically simian immunodeficiency virus (SIV)-infected rhesus macaques administered either vehicle (VEH/SIV; n = 9) or Δ9-tetrahydrocannabinol (Δ9-THC; THC/SIV; n = 8).

Pro-inflammatory miR-130a, miR-222, and miR-29b, lipopolysaccharide-responsive miR-146b-5p and SIV-induced miR-190b were significantly upregulated in VEH/SIV rhesus macaques. Compared to VEH/SIV rhesus macaques, 10 miRNAs were significantly upregulated in THC/SIV rhesus macaques, among which miR-204 was confirmed to directly target MMP8, an extracellular matrix-degrading collagenase that was significantly downregulated in THC/SIV rhesus macaques. Moreover, THC/SIV rhesus macaques failed to upregulate pro-inflammatory miR-21, miR-141 and miR-222, and alpha/beta-defensins, suggesting attenuated intestinal inflammation.

Further, THC/SIV rhesus macaques showed higher expression of tight junction proteins (occludin, claudin-3), anti-inflammatory MUC13, keratin-8 (stress protection), PROM1 (epithelial proliferation), and anti-HIV CCL5. Gomori one-step trichrome staining detected significant collagen deposition (fibrosis) in the paracortex and B cell follicular zones of axillary lymph nodes from all VEH/SIV but not in THC/SIV rhesus macaques, thus demonstrating the ability of Δ9-THC to prevent lymph node fibrosis, a serious irreversible consequence of HIV induced chronic inflammation.

Furthermore, using flow cytometry, we showed that Δ9-THC suppressed intestinal T cell proliferation/activation (Ki67/HLA-DR) and PD-1 expression and increased the percentages of anti-inflammatory CD163+ macrophages. Finally, while Δ9-THC did not affect the levels of CD4+ T cells, it significantly reduced absolute CD8+ T cell numbers in peripheral blood at 14 and 150 days post-SIV infection.

These translational findings strongly support a role for differential miRNA/gene induction and T cell activation in Δ9-THC-mediated suppression of intestinal inflammation in HIV/SIV and potentially other chronic inflammatory diseases of the intestine.”

https://www.ncbi.nlm.nih.gov/pubmed/31114576

https://www.frontiersin.org/articles/10.3389/fimmu.2019.00914/full

Effect of Cannabis Use on HIV DNA during Suppressive ART.

Infectious Diseases Society of America

“Cannabis use is frequent among people living with HIV and is associated with reduced systemic inflammation. We observed a faster HIV DNA decay during antiretroviral therapy among cannabis users, compared to no drug use. No cannabis-effect was observed on cellular HIV RNA transcription.”

https://www.ncbi.nlm.nih.gov/pubmed/31074488

 

Oral cannabinoids in people living with HIV on effective antiretroviral therapy: CTN PT028-study protocol for a pilot randomised trial to assess safety, tolerability and effect on immune activation.

Related image

“Cannabis when taken orally may represent a way to reduce inflammation and strengthen immune responses.”

https://www.ncbi.nlm.nih.gov/pubmed/30659041  https://bmjopen.bmj.com/content/9/1/e024793

Activation of GPR55 induces neuroprotection of hippocampal neurogenesis and immune responses of neural stem cells following chronic, systemic inflammation.

Brain, Behavior, and Immunity “New neurons are continuously produced by neural stem cells (NSCs) within the adult hippocampus. Numerous diseases, including major depressive disorder and HIV-1 associated neurocognitive disorder, are associated with decreased rates of adult neurogenesis. A hallmark of these conditions is a chronic release of neuroinflammatory mediators by activated resident glia. Recent studies have shown a neuroprotective role on NSCs of cannabinoid receptor activation. Yet, little is known about the effects of GPR55, a candidate cannabinoid receptor, activation on reductions of neurogenesis in response to inflammatory insult. In the present study, we examined NSCs exposed to IL-1β in vitro to assess inflammation-caused effects on NSC differentiation and the ability of GPR55 agonists to attenuate NSC injury. Taken together, these results suggest a neuroprotective role of GPR55 activation on NSCs in vitro and in vivo and that GPR55 provides a novel therapeutic target against negative regulation of hippocampal neurogenesis by inflammatory insult.”
]]>