A double-blind, randomized, cross-over, placebo-controlled, pilot trial with Sativex in Huntington’s disease.

“Huntington’s disease (HD) is a neurodegenerative disease for which there is no curative treatment available. Given that the endocannabinoid system is involved in the pathogenesis of HD mouse models, stimulation of specific targets within this signaling system has been investigated as a promising therapeutic agent in HD.

We conducted a double-blind, randomized, placebo-controlled, cross-over pilot clinical trial with Sativex®, a botanical extract with an equimolecular combination of delta-9-tetrahydrocannabinol and cannabidiol. Both Sativex® and placebo were dispensed as an oral spray, to be administered up to 12 sprays/day for 12 weeks.

The primary objective was safety, assessed by the absence of more severe adverse events (SAE) and no greater deterioration of motor, cognitive, behavioral and functional scales during the phase of active treatment. Secondary objectives were clinical improvement of Unified Huntington Disease Rating Scale scores.

Twenty-six patients were randomized and 24 completed the trial. After ruling-out period and sequence effects, safety and tolerability were confirmed. No differences on motor (p = 0.286), cognitive (p = 0.824), behavioral (p = 1.0) and functional (p = 0.581) scores were detected during treatment with Sativex® as compared to placebo. No significant molecular effects were detected on the biomarker analysis.

Sativex® is safe and well tolerated in patients with HD, with no SAE or clinical worsening.

No significant symptomatic effects were detected at the prescribed dosage and for a 12-week period. Also, no significant molecular changes were observed on the biomarkers.

Future study designs should consider higher doses, longer treatment periods and/or alternative cannabinoid combinations. Clincaltrals.gov identifier: NCT01502046.”

http://www.ncbi.nlm.nih.gov/pubmed/27159993

ENDOCANNABINOID SYSTEM: A multi-facet therapeutic target.

Image result for Curr Clin Pharmacol.

“Cannabis sativa is also popularly known as marijuana. It is being cultivated and used by man for recreational and medicinal purposes from many centuries.

Study of cannabinoids was at bay for very long time and its therapeutic value could not be adequately harnessed due to its legal status as proscribed drug in most of the countries.

The research of drugs acting on endocannabinoid system has seen many ups and down in recent past. Presently, it is known that endocannabinoids has role in pathology of many disorders and they also serve “protective role” in many medical conditions.

Several diseases like emesis, pain, inflammation, multiple sclerosis, anorexia, epilepsy, glaucoma, schizophrenia, cardiovascular disorders, cancer, obesity, metabolic syndrome related diseases, Parkinson’s disease, Huntington’s disease, Alzheimer’s disease and Tourette’s syndrome could possibly be treated by drugs modulating endocannabinoid system.

Presently, cannabinoid receptor agonists like nabilone and dronabinol are used for reducing the chemotherapy induced vomiting. Sativex (cannabidiol and THC combination) is approved in the UK, Spain and New Zealand to treat spasticity due to multiple sclerosis. In US it is under investigation for cancer pain, another drug Epidiolex (cannabidiol) is also under investigation in US for childhood seizures. Rimonabant, CB1 receptor antagonist appeared as a promising anti-obesity drug during clinical trials but it also exhibited remarkable psychiatric side effect profile. Due to which the US Food and Drug Administration did not approve Rimonabant in US. It sale was also suspended across the EU in 2008.

Recent discontinuation of clinical trial related to FAAH inhibitor due to occurrence of serious adverse events in the participating subjects could be discouraging for the research fraternity. Despite of some mishaps in clinical trials related to drugs acting on endocannabinoid system, still lot of research is being carried out to explore and establish the therapeutic targets for both cannabinoid receptor agonists and antagonists.

One challenge is to develop drugs that target only cannabinoid receptors in a particular tissue and another is to invent drugs that acts selectively on cannabinoid receptors located outside the blood brain barrier. Besides this, development of the suitable dosage forms with maximum efficacy and minimum adverse effects is also warranted.

Another angle to be introspected for therapeutic abilities of this group of drugs is non-CB1 and non-CB2 receptor targets for cannabinoids.

In order to successfully exploit the therapeutic potential of endocannabinoid system, it is imperative to further characterize the endocannabinoid system in terms of identification of the exact cellular location of cannabinoid receptors and their role as “protective” and “disease inducing substance”, time-dependent changes in the expression of cannabinoid receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/27086601

Endocannabinoids and Neurodegenerative Disorders: Parkinson’s Disease, Huntington’s Chorea, Alzheimer’s Disease, and Others.

“This review focuses on the role of the endocannabinoid signaling system in controlling neuronal survival, an extremely important issue to be considered when developing new therapies for neurodegenerative disorders.

First, we will describe the cellular and molecular mechanisms, and the signaling pathways, underlying these neuroprotective properties, including the control of glutamate homeostasis, calcium influx, the toxicity of reactive oxygen species, glial activation and other inflammatory events; and the induction of autophagy.

We will then concentrate on the preclinical studies and the few clinical trials that have been carried out targeting endocannabinoid signaling in three important chronic progressive neurodegenerative disorders (Parkinson’s disease, Huntington’s chorea, and Alzheimer’s disease), as well as in other less well-studied disorders.

We will end by offering some ideas and proposals for future research that should be carried out to optimize endocannabinoid-based treatments for these disorders.

Such studies will strengthen the possibility that these therapies will be investigated in the clinical scenario and licensed for their use in specific disorders.”

Cannabinoids in Neurodegenerative Disorders and Stroke/Brain Trauma: From Preclinical Models to Clinical Applications.

“Cannabinoids form a singular family of plant-derived compounds (phytocannabinoids), endogenous signaling lipids (endocannabinoids), and synthetic derivatives with multiple biological effects and therapeutic applications in the central and peripheral nervous systems.

One of these properties is the regulation of neuronal homeostasis and survival, which is the result of the combination of a myriad of effects addressed to preserve, rescue, repair, and/or replace neurons, and also glial cells against multiple insults that may potentially damage these cells.

These effects are facilitated by the location of specific targets for the action of these compounds (e.g., cannabinoid type 1 and 2 receptors, endocannabinoid inactivating enzymes, and nonendocannabinoid targets) in key cellular substrates (e.g., neurons, glial cells, and neural progenitor cells).

This potential is promising for acute and chronic neurodegenerative pathological conditions. In this review, we will collect all experimental evidence, mainly obtained at the preclinical level, supporting that different cannabinoid compounds may be neuroprotective in adult and neonatal ischemia, brain trauma, Alzheimer’s disease, Parkinson’s disease, Huntington’s chorea, and amyotrophic lateral sclerosis.

This increasing experimental evidence demands a prompt clinical validation of cannabinoid-based medicines for the treatment of all these disorders, which, at present, lack efficacious treatments for delaying/arresting disease progression…”

http://www.ncbi.nlm.nih.gov/pubmed/26260390

Cannabinoids and Tremor Induced by Motor-related Disorders: Friend or Foe?

“Tremor arises from an involuntary, rhythmic muscle contraction/relaxation cycle and is a common disabling symptom of many motor-related diseases such as Parkinson disease, multiple sclerosis, Huntington disease, and forms of ataxia.

In the wake of anecdotal, largely uncontrolled, observations claiming the amelioration of some symptoms among cannabis smokers, and the high density of cannabinoid receptors in the areas responsible for motor function, including basal ganglia and cerebellum, many researchers have pursued the question of whether cannabinoid-based compounds could be used therapeutically to alleviate tremor associated with central nervous system diseases.

In this review, we focus on possible effects of cannabinoid-based medicines, in particular on Parkinsonian and multiple sclerosis-related tremors and the common probable molecular mechanisms. While, at present, inconclusive results have been obtained, future investigations should extend preclinical studies with different cannabinoids to controlled clinical trials to determine potential benefits in tremor.”

http://www.ncbi.nlm.nih.gov/pubmed/26152606

The endocannabinoid system as a target for the treatment of neurodegenerative disease.

Logo of brjpharm

“The Cannabis sativa plant has been exploited for medicinal, agricultural and spiritual purposes in diverse cultures over thousands of years.

Cannabis has been used recreationally for its psychotropic properties, while effects such as stimulation of appetite, analgesia and anti-emesis have lead to the medicinal application of cannabis.

Indeed, reports of medicinal efficacy of cannabis can been traced back as far as 2700 BC, and even at that time reports also suggested a neuroprotective effect of the cultivar.

…alterations in the endocannabinoid system have been extensively investigated in a range of neurodegenerative disorders.

In this review we examine the evidence implicating the endocannabinoid system in the cause, symptomatology or treatment of neurodegenerative disease. We examine data from human patients and compare and contrast this with evidence from animal models of these diseases. On the basis of this evidence we discuss the likely efficacy of endocannabinoid-based therapies in each disease context.

There has been anecdotal and preliminary scientific evidence of cannabis affording symptomatic relief in diverse neurodegenerative disorders. These include multiple sclerosis, Huntington’s, Parkinson’s and Alzheimer’s diseases, and amyotrophic lateral sclerosis.

This evidence implied that hypofunction or dysregulation of the endocannabinoid system may be responsible for some of the symptomatology of these diseases.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2931550/

The role of cannabinoids and leptin in neurological diseases.

“Cannabinoids exert a neuroprotective influence on some neurological diseases, including Alzheimer’s, Parkinson’s, Huntington’s, multiple sclerosis and epilepsy.

Synthetic cannabinoid receptor agonists/antagonists or compounds can provide symptom relief or control the progression of neurological diseases. However, the molecular mechanism and the effectiveness of these agents in controlling the progression of most of these diseases remain unclear.

Cannabinoids may exert effects via a number of mechanisms and interactions with neurotransmitters, neurotropic factors and neuropeptides.

Leptin is a peptide hormone involved in the regulation of food intake and energy balance via its actions on specific hypothalamic nuclei. Leptin receptors are widely expressed throughout the brain, especially in the hippocampus, basal ganglia, cortex and cerebellum. Leptin has also shown neuroprotective properties in a number of neurological disorders, such as Parkinson’s and Alzheimer’s.

Therefore, cannabinoid and leptin hold therapeutic potential for neurological diseases.

Further elucidation of the molecular mechanisms underlying the effects on these agents may lead to the development of new therapeutic strategies for the treatment of neurological disorders.”

New Approaches in the Design and Development of Cannabinoid Receptor Ligands: Multifunctional and Bivalent Compounds.

“Since the identification of the endocannabinoid system, two G protein-coupled receptors (GPCRs) of this complex system were identified and characterized: cannabinoid receptors type 1 (CB1R) and type 2 (CB2R).

In addition to orthosteric and subsequently allosteric ligands, new strategies have been used to target CBRs.

Bivalent ligands and multifunctional ligands acting at diverse biological targets have been designed, synthesized, and characterized for both CBRs. Due to their altered receptor binding and pharmacological profiles, they are interesting tools to explore CBR functions and their interactions with other physiological systems.

Moreover, this approach may bear therapeutic advantages in the therapy of CBR-related disorders, especially multifactorial diseases.

Promising prospects include anorectics with fewer side effects, analgesics with decreased tolerance, and therapeutics with multiple pharmacological activities for the treatment of cancer, inflammation, multiple sclerosis, Huntington’s and Alzheimer’s diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/25820617

Components of the endocannabinoid and dopamine systems are dysregulated in Huntington’s disease: analysis of publicly available microarray datasets.

“The endocannabinoid system (ECS) and the dopaminergic system (DAS) are two major regulators of basal ganglia function. During Huntington’s disease (HD) pathogenesis, the expression of genes in both the ECS and DAS is dysregulated…

The resulting data confirm gene expression changes observed using different approaches and provide novel insights into the consistency between changes observed in human tissue and various models, as well as disease stage- and tissue-specific transcriptional dysregulation in HD.

The major implication of the systems-wide data presented here is that therapeutic strategies targeting the ECS or DAS must consider the dynamic changes in gene expression over time and in different body areas, which occur during HD progression and the interconnectedness of the two systems.”

http://www.ncbi.nlm.nih.gov/pubmed/25692022

http://www.thctotalhealthcare.com/category/huntingtons/

Neuroprotective Properties of Cannabigerol in Huntington’s Disease: Studies in R6/2 Mice and 3-Nitropropionate-lesioned Mice.

“Different plant-derived and synthetic cannabinoids have shown to be neuroprotective in experimental models of Huntington’s disease (HD) through cannabinoid receptor-dependent and/or independent mechanisms.

Herein, we studied the effects of cannabigerol (CBG), a nonpsychotropic phytocannabinoid, in 2 different in vivo models of HD.

CBG was extremely active as neuroprotectant in mice intoxicated with 3-nitropropionate (3NP), improving motor deficits and preserving striatal neurons against 3NP toxicity.

In addition, CBG attenuated the reactive microgliosis and the upregulation of proinflammatory markers induced by 3NP, and improved the levels of antioxidant defenses that were also significantly reduced by 3NP.

We also investigated the neuroprotective properties of CBG in R6/2 mice. Treatment with this phytocannabinoid produced a much lower, but significant, recovery in the deteriorated rotarod performance typical of R6/2 mice.

Using HD array analysis, we were able to identify a series of genes linked to this disease (e.g., symplekin, Sin3a, Rcor1, histone deacetylase 2, huntingtin-associated protein 1, δ subunit of the gamma-aminobutyric acid-A receptor (GABA-A), and hippocalcin), whose expression was altered in R6/2 mice but partially normalized by CBG treatment.

We also observed a modest improvement in the gene expression for brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and peroxisome proliferator-activated receptor-γ (PPARγ), which is altered in these mice, as well as a small, but significant, reduction in the aggregation of mutant huntingtin in the striatal parenchyma in CBG-treated animals.

In conclusion, our results open new research avenues for the use of CBG, alone or in combination with other phytocannabinoids or therapies, for the treatment of neurodegenerative diseases such as HD.”

http://www.ncbi.nlm.nih.gov/pubmed/25252936

http://www.thctotalhealthcare.com/category/huntingtons/