Cannabidiol: a promising drug for neurodegenerative disorders?

“Neurodegenerative diseases represent, nowadays, one of the main causes of death in the industrialized country. They are characterized by a loss of neurons in particular regions of the nervous system. It is believed that this nerve cell loss underlies the subsequent decline in cognitive and motor function that patients experience in these diseases. A range of mutant genes and environmental toxins have been implicated in the cause of neurodegenerative disorders but the mechanism remains largely unknown. At present, inflammation, a common denominator among the diverse list of neurodegenerative diseases, has been implicated as a critical mechanism that is responsible for the progressive nature of neurodegeneration.

Since, at present, there are few therapies for the wide range of neurodegenerative diseases, scientists are still in search of new therapeutic approaches to the problem. An early contribution of neuroprotective and antiinflammatory strategies for these disorders seems particularly desirable because isolated treatments cannot be effective.

 In this contest, marijuana derivatives have attracted special interest, although these compounds have always raised several practical and ethical problems for their potential abuse. Nevertheless, among Cannabis compounds, cannabidiol (CBD), which lacks any unwanted psychotropic effect, may represent a very promising agent with the highest prospect for therapeutic use.”

http://www.ncbi.nlm.nih.gov/pubmed/19228180

Cannabidiol Reduces Aβ-Induced Neuroinflammation and Promotes Hippocampal Neurogenesis through PPARγ Involvement

“CBD blunted neuroinflammation sustained by astrocytes through PPARγ selective activation in vitro and in vivo.

Results from the present study prove the selective involvement of PPARγ in the anti-inflammatory and neuroprotective effects of CBD here observed either in vitro and in vivo. In addition, CBD significantly promoted neurogenesis in Aβ injured rat hippocampi, much expanding its already wide spectrum of beneficial actions exerted in AD models, a non negligible effect, due to its capability to activate PPARγ.

In conclusion, results of the present research demonstrate that CBD may exert protective functions through a PPARγ dependent activation, which leads to a reduction in reactive gliosis and consequently in neurodegeneration. Moreover, in the current experimental conditions this phytocannabinoid appears to stimulate neurogenesis since it increases DCX immunopositive cell proliferation rate in rat DG.

Innovative therapeutic approaches which could significantly improve AD course require new molecules that will be able to have an impact on different pathological pathways, which converge at the progressive neurological decline. CBD has shown a capability to profoundly reduce reactive astrogliosis and to guarantee both direct and indirect neuronal protection in Aβ induced neuroinflammation/neurodegeration. So far, the lack of understanding of the precise molecular mechanism involved in CBD pharmacological actions, has had limited interest and has puzzled investigators.

Currently, findings of the present study throw some light on the issue, and frame CBD as a new PPARγ activator.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230631/

Role of CB2 receptors in neuroprotective effects of cannabinoids.

“CB2 receptors, the so-called peripheral cannabinoid receptor type, were first described in the immune system, but they have been recently identified in the brain in healthy conditions and, in particular, after several types of cytotoxic stimuli. Specifically, CB2 receptors were identified in microglial cells, astrocytes and, to a lesser extent, in certain subpopulations of neurons.

Given the lack of psychoactivity demonstrated by selective CB2 receptor agonists, this receptor becomes an interesting target for the treatment of neurological diseases, in particular, the case of certain neurodegenerative disorders in which induction/up-regulation of CB2 receptors has been already demonstrated. These disorders include Alzheimer’s disease, Huntington’s chorea, amyotrophic lateral sclerosis and others. Interestingly, in experimental models of these disorders, the activation of CB2 receptors has been related to a delayed progression of neurodegenerative events, in particular, those related to the toxic influence of microglial cells on neuronal homeostasis.

 The present article will review the evidence supporting that CB2 receptors might represent a key element in the endogenous response against different types of cytotoxic events, and that this receptor type may be a clinically promising target for the control of brain damage in neurodegenerative disorders.”

 http://www.ncbi.nlm.nih.gov/pubmed/18291574

Endocannabinoid system: emerging role from neurodevelopment to neurodegeneration.

“The endocannabinoid system, including endogenous ligands (‘endocannabinoids’ ECs), their receptors, synthesizing and degrading enzymes, as well as transporter molecules, has been detected from the earliest stages of embryonic development and throughout pre- and postnatal development. ECs are bioactive lipids, which comprise amides, esters and ethers of long chain polyunsaturated fatty acids. Anandamide (N-arachidonoylethanolamine; AEA) and 2-arachidonoylglycerol (2-AG) are the best studied ECs, and act as agonists of cannabinoid receptors.

Thus, AEA and 2-AG mimic several pharmacological effects of the exogenous cannabinoid delta9-tetrahydrocannabinol (Delta(9)-THC), the psychoactive principle of cannabis sativa preparations like hashish and marijuana. Recently, however, several lines of evidence have suggested that the EC system may play an important role in early neuronal development as well as a widespread role in neurodegeneration disorders. Many of the effects of cannabinoids and ECs are mediated by two G protein-coupled receptors (GPCRs), CB1 and CB2, although additional receptors may be implicated. Both CB1 and CB2 couple primarily to inhibitory G proteins and are subject to the same pharmacological influences as other GPCRs. This new system is briefly presented in this review, in order to put in a better perspective the role of the EC pathway from neurodevelopment to neurodegenerative disorders, like Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and multiple sclerosis.

In addition, the potential exploitation of antagonists of CB1 receptors, or of inhibitors of EC metabolism, as next-generation therapeutics is discussed.”

http://www.ncbi.nlm.nih.gov/pubmed/19356123

Cannabinoids Δ9-Tetrahydrocannabinol and Cannabidiol Differentially Inhibit the Lipopolysaccharide-activated NF-κB and Interferon-β/STAT Proinflammatory Pathways in BV-2 Microglial Cells

“Cannabinoids have been shown to exert anti-inflammatory activities in various in vivo and in vitro experimental models as well as ameliorate various inflammatory degenerative diseases. Δ9-Tetrahydrocannabinol (THC)is a major constituent of Cannabis and serves as an agonist of the cannabinoid receptors CB1 and CB2.

The second major constituent of Cannabis extract is cannabidiol (CBD). CBD lacks the psychoactive effects that accompany the use of THC. Moreover, CBD was demonstrated to antagonize some undesirable effects of THC, including intoxication, sedation, and tachycardia, while sharing neuroprotective, anti-oxidative, anti-emetic, and anti-carcinogenic properties. Both THC and CBD have been shown to exert anti-inflammatory properties and to modulate the function of immune cells…

In summary, our results show that although both THC and CBD exert anti-inflammatory effects, the two compounds engage different, although to some extent overlapping, intracellular pathways. Both THC and CBD decrease the activation of proinflammatory signaling…

 The cannabinoids by moderating or disrupting these signaling networks may show promise as anti-inflammatory agents.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2804319/

Cannabinoid Receptor Type 1 Protects Nigrostriatal Dopaminergic Neurons against MPTP Neurotoxicity by Inhibiting Microglial Activation

“The present in vivo and in vitro findings clearly indicate that the CB1 receptor possesses anti-inflammatory properties and inhibits microglia-mediated oxidative stress.

 Our results collectively suggest that the cannabinoid system is beneficial for the treatment of Parkinson’s disease and other disorders associated with neuroinflammation and microglia-derived oxidative damage.

CB1 receptor is a useful pharmacological target for treating PD and other disorders associated with neuroinflammation and microglia-derived oxidative damage. ”

http://www.jimmunol.org/content/187/12/6508.long

Cannabinoids and neurodegenerative diseases.

“Although significant advances have taken place in recent years on our understanding of the molecular mechanisms of different neurodegenerative diseases, its translation into effective therapeutic treatments has not been as successful as could be expected. There is still a dramatic lack of curative treatments for the most frequent disorders and only symptomatic relief for many others. Under this perspective, the search for novel therapeutic approaches is demanding and significant attention and efforts have been directed to studying additional neurotransmission systems including the endocannabinoid system (ECS).

The neuroprotective properties of exogenous as well as endogenous cannabinoids have been known for years and the underlying molecular mechanisms have been recently unveiled. As discussed later, antioxidative, antiglutamatergic and antiinflammatory effects are now recognized as derived from cannabinoid action and are known to be of common interest for many neurodegenerative processes.

 Thus, these characteristics make cannabinoids attractive candidates for the development of novel therapeutic strategies.

 The present review will focus on the existing data regarding the possible usefulness of cannabinoid agents for the treatment of relevant neurological pathologies for our society such as Alzheimer’s disease, multiple sclerosis, Huntington’s disease and amyotrophic lateral sclerosis.”

http://www.ncbi.nlm.nih.gov/pubmed/19839933

Latest advances in cannabinoid receptor agonists.

“Since the discovery of cannabinoid receptors and their endogenous ligands in early 1990s, the endocannabinoid system has been shown to play a vital role in several pathophysiological processes. It has been targeted for the treatment of several diseases including neurodegenerative diseases (Parkinson’s disease, Alzheimer’s disease, Huntington’s disease and MS), cancer, obesity, inflammatory bowel disease, neuropathic and inflammatory pain. The last decade has witnessed remarkable advances in the development of cannabinergic ligands displaying high selectivity and potency towards two subtypes of cannabinoid receptors, namely CB1 and CB2.”

 “…we highlight the latest advances made in the development of cannabinoid agonists and summarize recently disclosed, novel chemical scaffolds as CB-selective agonists…”

 

“CONCLUSIONS:

Our analysis reveals prolific patenting activity mainly in the CB2 selective agonist area. Limiting the BBB penetrability, thereby, leading to peripherally restricted CB1/CB2 agonists and enhancing CB2-selectivity emerge as likely prerequisites for avoidance of adverse central CB1 mediated side effects.”

http://www.ncbi.nlm.nih.gov/pubmed/19939187

Loss of cannabinoid CB1 receptor expression in the 6-hydroxydopamine-induced nigrostriatal terminal lesion model of Parkinson’s disease in the rat.

Abstract

“The endocannabinoid system is emerging as a potential alternative to the dopaminergic system for the treatment of Parkinson’s disease. Like all emerging targets, validation of this system’s potential for treating human Parkinsonism necessitates testing in animal models of the condition. However, if components of the endocannabinoid system are altered by the induction of a Parkinsonian state in animal models, this could have an impact on the interpretation of such preclinical experiments. This study sought to determine if expression of the CB(1) subtype of cannabinoid receptor is altered in the two most commonly used rat models of Parkinson’s disease. Parkinsonian lesions were induced by stereotaxic injection of 6-hydroxydopamine into the axons (medial forebrain bundle) or terminals (striatum) of the nigrostriatal pathway. On days 1, 3, 7, 14 and 28 post-lesion, rats were sacrificed and brains were processed for tyrosine hydroxylase and CB(1) receptor immunohistochemistry. The CB(1) receptor was expressed strongly in the substantia nigra pars reticulata, minimally overlapping with tyrosine hydroxylase immunoreactivity in the pars compacta. Interestingly, while there was little change in CB(1) receptor expression following axonal lesion, expression of the receptor was significantly reduced following terminal lesion. Loss of CB(1) receptor expression in the pars reticulata correlated significantly with the loss of striatal and nigral volume after terminal lesion indicating this may have been due to 6-hydroxydopamine-induced non-specific damage of striatonigral neurons which are known to express CB(1) receptors. Thus, this result has implications for the choice of model and interpretation of studies used to investigate potential cannabinoid-based therapies for Parkinson’s disease as well as striatonigral diseases such as Huntington’s disease and Multiple Systems Atrophy.”

http://www.ncbi.nlm.nih.gov/pubmed/20097273

Neuroprotection by Δ9-Tetrahydrocannabinol, the Main Active Compound in Marijuana, against Ouabain-Induced In Vivo Excitotoxicity

“These results provide evidence that the cannabinoid system can serve to protect the brain against neurodegeneration.”

“In summary, we have shown that in an in vivo model of neurodegeneration Δ9-THC reduces neuronal damage via a CB1-receptor-mediated mechanism. This holds in both the acute and late phase after induction of excitotoxicity. Δ9-THC inhibits astrogliosis via a non-CB1-receptor-controlled mechanism. The results strengthen the concept that the endogenous cannabinoid system may serve to establish a defense system for the brain. This system may be functional in several neurodegenerative diseases in which excitotoxicity is thought to play a role, such as amyotrophic lateral sclerosis, Huntington’s and Parkinson’s diseases, and also in acute neuronal damage as found in stroke and traumatic brain injury. It is conceivable that the endogenous cannabinoid system can be exploited for therapeutic interventions in these types of primarily incurable diseases.”

http://www.jneurosci.org/content/21/17/6475.long