Blood pressure and hypertension in older adults with a history of regular cannabis use: findings from the Multi-Ethnic Study of Atherosclerosis

pubmed logo

“Background: Observational evidence investigating associations between cannabis use and blood pressure and hypertension is inconsistent.

Methods: Cross-sectional data from 3,255 participants at Exam 6 (2016-2018) of the Multi-Ethnic Study of Atherosclerosis (MESA) were analyzed, including self-reported cannabis smoking patterns, standardized measures of systolic blood pressure (SBP), diastolic blood pressure (DBP), pulse pressure (PP; BP collectively), and hypertension. ANCOVA and multivariable relative risk regression models were used to calculate adjusted means for BP and adjusted prevalence ratios (PRs) for prevalent hypertension.

Results: In fully adjusted ANCOVA models, a history of regular cannabis smoking, when compared to no history, was not significantly associated with increased SBP [mean difference: 0.1 mmHg (95% CI: -1.6-1.9)], DBP [mean difference: 0.5 mmHg (95% CI: -0.3-1.4)], PP [mean difference: -0.5 mmHg (95% CI: -1.8-0.9)], or prevalent hypertension [PR: 1.01 (95% CI: 0.93-1.10)]. Furthermore, no associations were observed for either the duration or recency (in the past month) of cannabis smoking or number of joint/pipe years. Models exploring potential interactions between a history of regular cannabis smoking and age, sex, race/ethnicity, and cigarette smoking status were not significant for either BP or hypertension.

Conclusions: In a cohort of racially and ethnically diverse older adults with a high prevalence of hypertension, no evidence of increased risk due to regular cannabis smoking was found for either blood pressure or hypertension.”

https://pubmed.ncbi.nlm.nih.gov/39539498/

“In a cohort of racially and ethnically diverse older adults with a high prevalence of hypertension, no evidence of increased risk due to regular cannabis smoking was found for either blood pressure or hypertension.”

https://www.frontiersin.org/journals/cardiovascular-medicine/articles/10.3389/fcvm.2024.1432923/full

Chronic Cannabidiol Administration Mitigates Excessive Daytime Sleepiness and Fatigue in Patients with Primary Hypertension: Insights from a Randomized Crossover Trial

pubmed logo

“Background: The chronic effects of cannabidiol (CBD) supplementation on factors that could impact the quality of life (anxiety, sleeping quality, memory, etc.) are poorly explored. Hence, the aim of this study was to establish whether chronic CBD supplementation will improve self-reported outcomes related to quality of life. 

Methods: In this randomized crossover trial, 64 patients with primary hypertension were assigned to receive CBD (225-450 mg) for 5 weeks followed by 5 weeks of placebo or vice versa, with a 2-week washout in-between the two. Self-reported outcomes were assessed using short form-36 (SF-36), Pittsburgh sleep quality index (PSQI), Epworth sleepiness scale (ESS), memory complaint questionnaire (MAC-Q), and state-trait anxiety inventory (STAI). 

Results: Five-week administration of CBD, but not of placebo, resulted in improvement of ESS score (F = 6.738, p = 0.011), as well as fatigue/vitality (ΔCBD = 5.0, p < 0.001) and psychological well-being dimensions of SF-36 (ΔCBD = 7.4, p = 0.039). No overall benefit of CBD on quality of life was noted (p = 0.674). No changes were seen in total scores of MAC-Q, PSQI, or STAI (p = 0.151, p = 0.862, p = 0.702, respectively). No significant correlations were found between plasma CBD concentrations and any of the scores. 

Conclusions: Chronic CBD administration reduced excessive daytime sleepiness, despite the fact that no change was observed in self-reported quality of sleep. Furthermore, self-reported fatigue and psychological well-being dimensions of quality of life also improved following chronic CBD use.”

https://pubmed.ncbi.nlm.nih.gov/39187263/

https://www.liebertpub.com/doi/10.1089/can.2024.0028

Beneficial Consequences of One-Month Oral Treatment with Cannabis Oil on Cardiac Hypertrophy and the Mitochondrial Pool in Spontaneously Hypertensive Rats

pubmed logo

“Introduction: It has been demonstrated the dysregulation of the cardiac endocannabinoid system in cardiovascular diseases. Thus, the modulation of this system through the administration of phytocannabinoids present in medicinal cannabis oil (CO) emerges as a promising therapeutic approach. Furthermore, phytocannabinoids exhibit potent antioxidant properties, making them highly desirable in the treatment of cardiac pathologies, such as hypertension-induced cardiac hypertrophy (CH). 

Objective: To evaluate the effect of CO treatment on hypertrophy and mitochondrial status in spontaneously hypertensive rat (SHR) hearts. 

Methods: Three-month-old male SHR were randomly assigned to CO or olive oil (vehicle) oral treatment for 1 month. We evaluated cardiac mass and histology, mitochondrial dynamics, membrane potential, area and density, myocardial reactive oxygen species (ROS) production, superoxide dismutase (SOD), and citrate synthase (CS) activity and expression. Data are presented as mean ± SEM (n) and compared by t-test, or two-way ANOVA and Bonferroni post hoc test were used as appropriate. p < 0.05 was considered statistically significant. 

Results: CH was reduced by CO treatment, as indicated by the left ventricular weight/tibia length ratio, left ventricular mass index, myocyte cross-sectional area, and left ventricle collagen volume fraction. The ejection fraction was preserved in the CO-treated group despite the persistence of elevated systolic blood pressure and the reduction in CH. Mitochondrial membrane potential was improved and mitochondrial biogenesis, dynamics, area, and density were all increased by treatment. Moreover, the activity and expression of the CS were enhanced by treatment, whereas ROS production was decreased and the antioxidant activity of SOD increased by CO administration. 

Conclusion: Based on the mentioned results, we propose that 1-month oral treatment with CO is effective to reduce hypertrophy, improve the mitochondrial pool and increase the antioxidant capacity in SHR hearts.”

https://pubmed.ncbi.nlm.nih.gov/39137344/

https://www.liebertpub.com/doi/10.1089/can.2024.0066

Research progress in the management of vascular disease with cannabidiol: a review

pubmed logo

“The morbidity and mortality rates associated with vascular disease (VD) have been gradually increasing. Currently, the most common treatment for VD is surgery, with the progress in drug therapy remaining slow. Cannabidiol (CBD) is a natural extract of Cannabis sativa L. with sedative, analgesic, and nonaddictive properties. CBD binds to 56 cardiovascular-related receptors and exerts extensive regulatory effects on the cardiovascular system, making it a potential pharmacological agent for the management of VD. However, most CBD studies have focused on neurological and cardiac diseases, and research on the management of VD with CBD is still rare. In this review, we summarize the currently available data on CBD in the management of VD, addressing four aspects: the major molecular targets of CBD in VD management, pharmacokinetic properties, therapeutic effects of CBD on common VDs, and side effects. The findings indicate that CBD has anti-anxiety, anti-oxidation, and anti-inflammatory properties and can inhibit abnormal proliferation and apoptosis of vascular smooth muscle and endothelial cells; these effects suggest CBD as a therapeutic agent for atherosclerosis, stress-induced hypertension, diabetes-related vasculopathy, ischemia-reperfusion injury, and vascular damage caused by smoking and alcohol abuse. This study provides a theoretical basis for further research on CBD in the management of VD.”

https://pubmed.ncbi.nlm.nih.gov/38172934/

https://cardiothoracicsurgery.biomedcentral.com/articles/10.1186/s13019-023-02476-y

Trial of a Novel Oral Cannabinoid Formulation in Patients with Hypertension: A Double-Blind, Placebo-Controlled Pharmacogenetic Study

pubmed logo

“Cannabidiol (CBD) is a non-psychoactive cannabinoid, and available evidence suggests potential efficacy in the treatment of many disorders. DehydraTECH™2.0 CBD is a patented capsule formulation that improves the bioabsorption of CBD. We sought to compare the effects of CBD and DehydraTECH™2.0 CBD based on polymorphisms in CYP P450 genes and investigate the effects of a single CBD dose on blood pressure. In a randomized and double-blinded order, 12 females and 12 males with reported hypertension were given either placebo capsules or DehydraTECH™2.0 CBD (300 mg of CBD, each). Blood pressure and heart rate were measured during 3 h, and blood and urine samples were collected. In the first 20 min following the dose, there was a greater reduction in diastolic blood pressure (p = 0.025) and mean arterial pressure MAP (p = 0.056) with DehydraTECH™2.0 CBD, which was probably due to its greater CBD bioavailability. In the CYP2C9*2*3 enzyme, subjects with the poor metabolizer (PM) phenotype had higher plasma CBD concentrations. Both CYP2C19*2 (p = 0.037) and CYP2C19*17 (p = 0.022) were negatively associated with urinary CBD levels (beta = -0.489 for CYP2C19*2 and beta = -0.494 for CYP2C19*17). Further research is required to establish the impact of CYP P450 enzymes and the identification of metabolizer phenotype for the optimization of CBD formulations.”

https://pubmed.ncbi.nlm.nih.gov/37242428/

https://www.mdpi.com/1424-8247/16/5/645

The Influence of Oral Cannabidiol on 24-h Ambulatory Blood Pressure and Arterial Stiffness in Untreated Hypertension: A Double-Blind, Placebo-Controlled, Cross-Over Pilot Study

pubmed logo

“Introduction: Studies reveal that cannabidiol may acutely reduce blood pressure and arterial stiffness in normotensive humans; however, it remains unknown if this holds true in patients with untreated hypertension. We aimed to extend these findings to examine the influence of the administration of cannabidiol on 24-h ambulatory blood pressure and arterial stiffness in hypertensive individuals.

Methods: Sixteen volunteers (eight females) with untreated hypertension (elevated blood pressure, stage 1, stage 2) were given oral cannabidiol (150 mg every 8 h) or placebo for 24 h in a randomised, placebo-controlled, double-blind, cross-over study. Measures of 24-h ambulatory blood pressure and electrocardiogram (ECG) monitoring and estimates of arterial stiffness and heart rate variability were obtained. Physical activity and sleep were also recorded.

Results: Although physical activity, sleep patterns and heart rate variability were comparable between groups, arterial stiffness (~ 0.7 m/s), systolic blood pressure (~ 5 mmHg), and mean arterial pressure (~ 3 mmHg) were all significantly (P < 0.05) lower over 24 h on cannabidiol when compared to the placebo. These reductions were generally larger during sleep. Oral cannabidiol was safe and well tolerated with no development of new sustained arrhythmias.

Conclusions: Our findings indicate that acute dosing of cannabidiol over 24 h can lower blood pressure and arterial stiffness in individuals with untreated hypertension. The clinical implications and safety of longer-term cannabidiol usage in treated and untreated hypertension remains to be established.”

https://pubmed.ncbi.nlm.nih.gov/37291376/

https://link.springer.com/article/10.1007/s12325-023-02560-8

Effects of CBD supplementation on ambulatory blood pressure and serum urotensin-II concentrations in Caucasian patients with essential hypertension: A sub-analysis of the HYPER-H21-4 trial

pubmed logo

“HYPER-H21-4 was a randomized crossover trial that aimed to determine if cannabidiol (CBD), a non-intoxicating constituent of cannabis, has relevant effects on blood pressure and vascular health in patients with essential hypertension. In the present sub-analysis, we aimed to elucidate whether serum urotensin-II concentrations may reflect hemodynamic changes caused by oral supplementation with CBD. The sub-analysis of this randomized crossover study included 51 patients with mild to moderate hypertension that received CBD for five weeks, and placebo for five weeks. After five weeks of oral CBD supplementation, but not placebo, serum urotensin concentrations reduced significantly in comparison to baseline (3.31 ± 1.46 ng/mL vs. 2.08 ± 0.91 ng/mL, P < 0.001). Following the five weeks of CBD supplementation, the magnitude of reduction in 24 h mean arterial pressure (MAP) positively correlated with the extent of change in serum urotensin levels (r = 0.412, P = 0.003); this association was independent of age, sex, BMI and previous antihypertensive treatment (β ± standard error, 0.023 ± 0.009, P = 0.009). No correlation was present in the placebo condition (r = -0.132, P = 0.357). In summary, potent vasoconstrictor urotensin seems to be implicated in CBD-mediated reduction in blood pressure, although further research is needed to confirm these notions.”

https://pubmed.ncbi.nlm.nih.gov/37321059/

https://www.sciencedirect.com/science/article/pii/S0753332223008065?via%3Dihub

Chronic Effects of Oral Cannabidiol Delivery on 24-h Ambulatory Blood Pressure in Patients with Hypertension (HYPER-H21-4): A Randomized, Placebo-Controlled, and Crossover Study

pubmed logo

“Background: Recent data indicate that cannabidiol (CBD), a nonintoxicating constituent of cannabis, is involved in several aspects of cardiovascular regulation, including blood pressure (BP). However, the impact of chronic CBD administration on 24-h BP and vascular health has not been previously examined in patients with hypertension. The primary aim of this randomized, triple-blind, placebo-controlled, and crossover study was to examine the influence of chronic CBD on 24-h ambulatory BP and arterial stiffness in hypertensive patients. 

Methods: Seventy patients with mild or moderate primary hypertension, who were untreated or receiving standard of care therapy, were randomly assigned to receive either 5 weeks of oral CBD or placebo-matched controls. Following a >2-week washout period, patients were crossed over to alternate therapy. The primary outcome of the study was dynamic in 24-h ambulatory BP and was assessed using two-way repeated measure analysis of variance. 

Results: Administration of CBD reduced average 24 h mean, systolic, and diastolic BP after 2.5 weeks (-3.22±0.90 mmHg [95% confidence interval -1.01 to -5.44 mmHg], -4.76±1.24 mmHg [-1.72 to -7.80 mmHg], and -2.25±0.80 mmHg [-0.30 to -6.01 mmHg], respectively (all p<0.05); however, these values largely remained stable following the uptitration of CBD dosing. There were no changes in liver enzymes or serious adverse events (AEs). There was no significant difference in pulse wave velocity (group×factor interaction: F=1.50, p=0.226) at different time points, regardless of the intervention arm. 

Conclusions: In conclusion, chronic administration of CBD reduces ambulatory BP in those with untreated and treated hypertension. In addition, lack of serious AEs implies safety and tolerability of the above-noted CBD formulation.”

https://pubmed.ncbi.nlm.nih.gov/37093160/

https://www.liebertpub.com/doi/10.1089/can.2022.0320

Role of Terpenophenolics in Modulating Inflammation and Apoptosis in Cardiovascular Diseases: A Review

ijms-logo

“One in every three deaths worldwide is caused by cardiovascular diseases (CVDs), estimating a total of 17.9 million deaths annually. By 2030, it is expected that more than 24 million people will die from CVDs related complications. The most common CVDs are coronary heart disease, myocardial infarction, stroke, and hypertension.

A plethora of studies has shown inflammation causing both short-term and long-term damage to the tissues in many organ systems, including the cardiovascular system. In parallel to inflammation processes, it has been discovered that apoptosis, a mode of programmed cell death, may also contribute to CVD development due to the loss of cardiomyocytes.

Terpenophenolic compounds are comprised of terpenes and natural phenols as secondary metabolites by plants and are commonly found in the genus Humulus and Cannabis. A growing body of evidence has shown that terpenophenolic compounds exhibit protective properties against inflammation and apoptosis within the cardiovascular system.

This review highlights the current evidence elucidating the molecular actions of terpenophenolic compounds in protecting the cardiovascular system, i.e., bakuchiol, ferruginol, carnosic acid, carnosol, carvacrol, thymol and hinokitiol. The potential of these compounds is discussed as the new nutraceutical drugs that may help to decrease the burden of cardiovascular disorders.”

https://pubmed.ncbi.nlm.nih.gov/36982410/

“In this review, we have summarised the evidence on the potential pharmacological activities of terpenophenolic compounds in regulating inflammation and apoptosis associated with CVDs. Treatment of various classes of terpenophenolic compounds has been shown effective in preventing and limiting the progression of heart failure. In addition, all terpenophenolics seem to be potent antioxidants, which are proven to upregulate the Nrf2 pathway and increase the endogenous antioxidant level.”

https://www.mdpi.com/1422-0067/24/6/5339

CBD supplementation reduces arterial blood pressure via modulation of the sympatho-chromaffin system: A substudy from the HYPER-H21-4 trial

Biomedicine & Pharmacotherapy

“Data concerning the effects of cannabidiol (CBD) on blood pressure (BP) is controversial. HYPER-H21-4 was a randomized, placebo-controlled, crossover trial which sought to elucidate if 5-week administration of CBD will reduce BP in hypertensive patients. In the substudy of this trial, we aimed to establish the mechanistic background of CBD-induced BP reduction. Specifically, we explored the dynamic of catestatin, a sympathoinhibitory peptide implicated in the pathophysiology of hypertension. In the present analysis, 54 patients with Grade 1 hypertension were included. 5-week administration of CBD but not placebo reduced serum catestatin concentration in comparison to baseline (13.50 [10.85-19.05] vs. 9.65 [6.37-12.26] ng/mL, p < 0.001). Serum catestatin levels at the start of the treatment period demonstrated a negative correlation with the extent of reduction in mean arterial pressure (r = -0.474, p < 0.001). Moreover, the extent of change in catestatin serum levels showed a strong correlation with the extent of mean arterial pressure reduction (r = 0.712, p < 0.001). Overall, the results of the present study imply that the antihypertensive effects of CBD may be explained by its interaction with the sympatho-chromaffin system, although further research is warranted.”

https://pubmed.ncbi.nlm.nih.gov/36780785/

“CBD supplementation reduces office blood pressure (BP) and serum catestatin levels.”

“Overall, the results of the present study imply that antihypertensive effects of CBD may be explained by its interaction with the sympatho-chromaffin system, although further research is warranted.”

https://www.sciencedirect.com/science/article/pii/S0753332223001750?via%3Dihub