“The aim of this work was to enhance the acetylcholinesterase (AChE)-inhibitory activity of a pepsin-produced hemp seed protein hydrolysates (HPH) through reverse-phase HPLC separation followed by identification of peptide sequences present in the most active fraction. The HPH was separated into eight fractions (F1-F8) with F7 exhibiting significantly (p < 0.05) the strongest (97.5%) in vitro inhibition of electric eel AChE (eeAChE) activity in comparison to 53.8% for HPH. The HPH consisted mostly of low molecular weight peptides of < 11 amino acid residues and most contained at least one hydrophobic amino acid. Kinetics of enzyme inhibition revealed a mixed-type inhibition of eeAChE activity by HPH whereas F7 acted through an uncompetitive mode; in contrast inhibition of human AChE by HPH and F7 was uncompetitive. The stronger inhibitory potency of the F7 peptides fraction against both enzymes was confirmed through reduced maximal velocity, catalytic efficiency, and inhibition constant values when compared to the HPH.
PRACTICAL APPLICATIONS: The use of natural products for the prevention or treatment of human diseases continues to be an area of intense research activities. Food protein-derived peptides obtained through enzymatic hydrolysis of hemp seed proteins were shown in vitro to be strong inhibitors of activities of both the eel and human forms of acetylcholinesterase (AChE). AChE is an important therapeutic target because excessive activity of this enzyme is a causative factor of neurodegenerative diseases such as dementia and Alzheimer’s. This work showed that peptides in the most active fraction are small in sizes, which may favor their absorption into blood circulation and possible permeation of the blood-brain barrier. Therefore, the hemp seed peptides are potential agents that can be used to formulate functional foods and nutraceuticals against neurodegenerative diseases.”
“Cannabinoids have been increasingly gaining attention for their therapeutic potential in treating various cardiovascular disorders. These disorders include myocardial infarction, hypertension, atherosclerosis, arrhythmias, and metabolic disorders.
The aim of this review is to cover the main actions of cannabinoids on the cardiovascular system by examining the most recent advances in this field and major literature reviews.
It is well recognized that the actions of cannabinoids are mediated by either cannabinoid 1 or cannabinoid 2 receptors (CB2Rs). Endocannabinoids produce a triphasic response on blood pressure, while synthetic cannabinoids show a tissue-specific and species-specific response.
Blocking cannabinoid 1 receptors have been shown to be effective against cardiometabolic disorders, although this should be done peripherally. Blocking CB2Rs may be a useful way to treat atherosclerosis by affecting immune cells. The activation of CB2Rs was reported to be useful in animal studies of myocardial infarction and cardiac arrhythmia.
Although cannabinoids show promising effects in animal models, this does not always translate into human studies, and therefore, extensive clinical studies are needed to truly establish their utility in treating cardiovascular disease.”
“Patients with obesity are susceptible to hypertension and diabetes. Over-activation of
“Cannabinoids are naturally occurring compounds, derivatives of Indian hemp, in which tetrahydrocannabinol (THC) is the most important. Marijuana, hashish and hash oil are among those most commonly used in the group.
Cannabinoids (marjhuana and hashish) have been used throughout recorded history as effective drugs in treating various diseases and conditions such as: malaria, hypertension, constipation, bronchial asthma, rheumatic pains, and as natural pain relief in labour and joint pains.
Marijuana acts through cannabinoid receptors CB 1 and CB2. Both receptors inhibit cAMP accummulation (through Gi/o proteins) and stimulate mitrogen- activated protein kinase. CB1 rceptors are located in CNS and in adipose tissue, digestive tract, muscles, heart, lungs, liver, kidneys, gonads, prostate gland and other peripheral tissues. CB2 cannabinoid receptors are located in the peripheral nervous system (at the ends of peripheral nerves), and on the surfaces of the cells of the immunological system.
The discovery of endogenous cannabinoids has contributed to a better understanding of their role in the regulation of the intake of food, energetic homeostasis and their significant influence on the endocrine system.”


