ENDOCANNABINOID SYSTEM: A multi-facet therapeutic target.

Image result for Curr Clin Pharmacol.

“Cannabis sativa is also popularly known as marijuana. It is being cultivated and used by man for recreational and medicinal purposes from many centuries.

Study of cannabinoids was at bay for very long time and its therapeutic value could not be adequately harnessed due to its legal status as proscribed drug in most of the countries.

The research of drugs acting on endocannabinoid system has seen many ups and down in recent past. Presently, it is known that endocannabinoids has role in pathology of many disorders and they also serve “protective role” in many medical conditions.

Several diseases like emesis, pain, inflammation, multiple sclerosis, anorexia, epilepsy, glaucoma, schizophrenia, cardiovascular disorders, cancer, obesity, metabolic syndrome related diseases, Parkinson’s disease, Huntington’s disease, Alzheimer’s disease and Tourette’s syndrome could possibly be treated by drugs modulating endocannabinoid system.

Presently, cannabinoid receptor agonists like nabilone and dronabinol are used for reducing the chemotherapy induced vomiting. Sativex (cannabidiol and THC combination) is approved in the UK, Spain and New Zealand to treat spasticity due to multiple sclerosis. In US it is under investigation for cancer pain, another drug Epidiolex (cannabidiol) is also under investigation in US for childhood seizures. Rimonabant, CB1 receptor antagonist appeared as a promising anti-obesity drug during clinical trials but it also exhibited remarkable psychiatric side effect profile. Due to which the US Food and Drug Administration did not approve Rimonabant in US. It sale was also suspended across the EU in 2008.

Recent discontinuation of clinical trial related to FAAH inhibitor due to occurrence of serious adverse events in the participating subjects could be discouraging for the research fraternity. Despite of some mishaps in clinical trials related to drugs acting on endocannabinoid system, still lot of research is being carried out to explore and establish the therapeutic targets for both cannabinoid receptor agonists and antagonists.

One challenge is to develop drugs that target only cannabinoid receptors in a particular tissue and another is to invent drugs that acts selectively on cannabinoid receptors located outside the blood brain barrier. Besides this, development of the suitable dosage forms with maximum efficacy and minimum adverse effects is also warranted.

Another angle to be introspected for therapeutic abilities of this group of drugs is non-CB1 and non-CB2 receptor targets for cannabinoids.

In order to successfully exploit the therapeutic potential of endocannabinoid system, it is imperative to further characterize the endocannabinoid system in terms of identification of the exact cellular location of cannabinoid receptors and their role as “protective” and “disease inducing substance”, time-dependent changes in the expression of cannabinoid receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/27086601

Abrupt Quitting of Long-term Heavy Recreational Cannabis Use is Not Followed by Significant Changes in Blood Pressure and Heart Rate.

“To shed more light on the role of heart rate and blood pressure during cannabis withdrawal.

Abrupt cessation of recreational long-term daily cannabis use was not followed by significant changes in heart rate, blood and pulse pressure.

Also, these measures were not significantly correlated with the severity of the cannabis withdrawal syndrome.

The cohort’s risk for CVD was moderate (all tobacco using, overweight in 9 of 35 patients and elevation of serum C-reactive protein in many patients).

Its metabolic risk for CVD was minor considering the mostly normal blood pressure, normal serum lipids and glucose.

http://www.ncbi.nlm.nih.gov/pubmed/26761126

Cannabis to lower blood pressure!

News Medical - Life Sciences & Medicine

“A new method for lowering blood pressure (hypertension) through use of a compound that synthesizes a cannabis (hashish) plant component has been developed by a pharmacology Ph.D. student at the Hebrew University of Jerusalem School of Pharmacy.

Cardiovascular disease (CVD) accounts for about one-third of all deaths in industrialized countries, and is the leading reason for visits there to physicians as well as for drug prescriptions. However, not all patients respond well to the drugs available. There is no “ideal’ hypotensive (blood pressure lowering) drug.

The cannabis plant – also known as hashish or marijuana – through its chemical compounds — cannabinoids — has been shown to have a beneficial, hypotensive effect.”

http://www.news-medical.net/news/2006/06/19/18517.aspx

Report shows relationship between sensation seeking, reward sensitivity and cannabis use

“Lowering Of Blood Pressure Achieved Through Use Of Hashish-like Drug”  http://www.sciencedaily.com/releases/2006/06/060620083025.htm

http://www.thctotalhealthcare.com/category/hypertension-high-blood-pressure/

Characterization of Lignanamides from Hemp (Cannabis sativa L. ) Seed and their Antioxidant and Acetylcholinesterase Inhibitory Activities.

Image result for J Agric Food Chem.

“Hempseed is known for its content in fatty acids, proteins and fiber, which contribute to its nutritional value.

Here we studied the secondary metabolites of hempseed aiming at identifying bioactive compounds that could contribute to its health benefits.

This investigation led to the isolation of four new lignanamides cannabisin M, 2, cannabisin N, 5, cannabisin O, 8 and 3,3′-demethyl-heliotropamide, 10, together with ten known lignanamides, among which 4 was identified for the first time from hempseed.

Structures were established on the basis of NMR, HR-MS, UV, IR as well as by comparison with the literature data.

Lignanamides 2, 7, 9-14 showed good antioxidant activity among which 7, 10 and 13 also inhibited acetylcholinesterase in vitro.

The new identified compounds in this study added to the diversity of hempseed composition and the bioassays implied that hempseed, with lignanamides as nutrients, may be a good source of bioactive and protective compounds.”  http://www.ncbi.nlm.nih.gov/pubmed/26585089

“Alzheimer’s Disease (AD) is the most common single cause of dementia in our ageing society. On full assessment and diagnosis of AD, initiation of an AChe inhibitor is recommended as early as possible, it is important that AChe inhibitor therapy is considered for patients with mild to moderate AD.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2014378/

 “The Effects of Hempseed Meal Intake and Linoleic Acid on Drosophila Models of Neurodegenerative Diseases and Hypercholesterolemia. Our results indicate that hempseed meal (HSM) and linoleic acid are potential candidates for the treatment of Alzheimer’s disease (AD) and cardiovascular disease. These results show that HSM may prove of great utility as a health food, with potential for the prevention of AD and cardiovascular disease.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933972/

A novel hemp seed meal protein hydrolysate reduces oxidative stress factors in spontaneously hypertensive rats.

Logo of nutrients

“This report shows the antioxidant effects of a hemp seed meal protein hydrolysate (HMH) in spontaneously hypertensive rats (SHR)…

The results suggest that HMH contained antioxidant peptides that reduced the rate of lipid peroxidation in SHRs with enhanced antioxidant enzyme levels and total antioxidant capacity.”

http://www.ncbi.nlm.nih.gov/pubmed/25493943

“Cannabis sativa L., also commonly called industrial hemp seed, is historically an important source of food, fibre, dietary oil and medicine; the seed contains about 30% oil and 25% protein…

Proteins from both plant and animal sources, including those of hemp seed, have been isolated and recognized as essential sources of bioactive peptides capable of exerting various in vitro and in vivo activities, such as antioxidant, antihypertensive, antimicrobial, opioid, antithrombotic, hypocholesterolemic, appetite-reducing, mineral-binding, immunomodulatory and cytomodulatory…

HMH may serve as an important ingredient to formulate antioxidant diets with potential therapeutic effects.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4276990/

http://www.thctotalhealthcare.com/category/hypertension-high-blood-pressure/

Reduction by Δ9-tetrahydrocannabinol in the blood pressure of hypertensive rats bearing regenerated adrenal glands

Image result for THC

“A suspension of (−)-Δ9-trans-tetrahydrocannabinol (Δ9-THC) was administered daily for one week by i.p. injection to female rats showing the syndrome of adrenal regeneration hypertension (ARH)…

The findings indicate that Δ9-THC, at a moderate dose for the rat, is capable of lowering the blood pressure in rats suffering from adrenal regeneration hypertension and that chronic administration of Δ9-THC does not appear to stimulate the pituitary-adrenal axis, in contrast to reported effects of acute administration.”

 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1776093/

http://www.thctotalhealthcare.com/category/hypertension-high-blood-pressure/

Endocannabinoid-mediated modulation of Gq/11 protein-coupled receptor signaling-induced vasoconstriction and hypertension.

“Activation of G protein-coupled receptors (GPCRs) can induce vasoconstriction via calcium signal-mediated and Rho-dependent pathways…

Our aim was to provide evidence that GPCR signaling-induced 2-AG production and activation of vascular type1 cannabinoid receptors (CB1R) is capable of reducing agonist-induced vasoconstriction and hypertension…

Pharmacological or genetic loss of CB1R function augmented AngII-induced blood pressure rise in mice.

These data demonstrate that vasoconstrictor effect of GPCR agonists is attenuated via Gq/11-mediated vascular endocannabinoid formation.

Agonist-induced endocannabinoid-mediated CB1R activation is a significant physiological modulator of vascular tone.

Thus, the selective modulation of GPCR signaling-induced endocannabinoid release has a therapeutic potential in case of increased vascular tone and hypertension.”

http://www.ncbi.nlm.nih.gov/pubmed/25595485

http://www.thctotalhealthcare.com/category/hypertension-high-blood-pressure/

Δ(9)-THC and N-arachidonoyl glycine regulate BV-2 microglial morphology and cytokine release plasticity: implications for signaling at GPR18.

“Microglial cells are extremely plastic and undergo a variety of CNS-prompted shape changes relative to their location and current role. Signaling molecules from neurons also regulate microglial cytokine production. Neurons are known to employ the endogenous cannabinoid system to communicate with other cells of the CNS.

N-arachidonoyl glycine (NAGly) and Δ(9)-tetrahydrocannabinol (Δ(9)-THC) signaling via GPR18 has been introduced as an important new target in microglial-neuronal communication…

These data add to an emerging profile that emphasizes NAGly as a component of an endogenous system present in the CNS that tightly integrates microglial proliferation, recruitment, and adhesion with neuron-glia interactivity and tissue remodeling.”

http://www.ncbi.nlm.nih.gov/pubmed/24427137

The Novel Endocannabinoid Receptor GPR18 is Expressed in the Rostral Ventrolateral Medulla and Exerts Tonic Restraining Influence on Blood Pressure.

“Systemic administration of the GPR18 agonist abnormal cannabidiol (Abn CBD) lowers blood pressure (BP).

These findings are the first to demonstrate GPR18 expression in the RVLM, and to suggest sympathoinhibitory role for this receptor. The findings yield new insight into the role of a novel cannabinoid receptor (GPR18) in central BP control.”

http://www.ncbi.nlm.nih.gov/pubmed/24431468PR

Preventive and treatment effects of a hemp seed (Cannabis sativa L.) meal protein hydrolysate against high blood pressure in spontaneously hypertensive rats.

“This work determined the ability of hemp seed meal protein hydrolysate (HMH)-containing diets to attenuate elevated blood pressure (hypertension) development in spontaneously hypertensive rats (SHRs)…

CONCLUSIONS: The results suggest that HMH with strong hypotensive effects in SHRs could be used as a therapeutic agent for both the prevention and treatment of hypertension.”

http://www.ncbi.nlm.nih.gov/pubmed/24292743