“Cannabinoids produce a plethora of biological effects, including the modulation of neuronal activity through the activation of CB(1) receptors and of immune responses through the activation of CB(2) receptors. The selective targeting of either of these two receptor subtypes has clear therapeutic value. Recent evidence indicates that some of the cannabinomimetic effects previously thought to be produced through CB(1) and/or CB(2) receptors, be they on neuronal activity, on the vasculature tone or immune responses, still persist despite the pharmacological blockade or genetic ablation of CB(1) and/or CB(2) receptors. This suggests that additional cannabinoid and cannabinoid-like receptors exist. Here we will review this evidence in the context of their therapeutic value and discuss their true belonging to the endocannabinoid signaling system.” http://www.ncbi.nlm.nih.gov/pubmed/19248809
Category Archives: Inflammatory Bowel Disease
Endocannabinoid overactivity and intestinal inflammation
Abstract
“Cannabinoid receptors of type 1 and 2 (CB1 and CB2), endogenous ligands that activate them (endocannabinoids), and mechanisms for endocannabinoid biosynthesis and inactivation have been identified in the gastrointestinal system. Activation of CB1 receptors by endocannabinoids produces relaxation of the lower oesophageal sphincter and inhibition of gastric acid secretion, intestinal motility, and fluid stimulated secretion. However, stimulation of cannabinoid receptors impacts on gastrointestinal functions in several other ways. Recent data indicate that the endocannabinoid system in the small intestine and colon becomes over stimulated during inflammation in both animal models and human inflammatory disorders. The pathological significance of this “endocannabinoid overactivity” and its possible exploitation for therapeutic purposes are discussed here.”
“The endocannabinoid system of the gastrointestinal tract includes not only cannabinoid receptors but also endogenous agonists of these receptors, as well as mechanisms for their biosynthesis and inactivation”
“The main psychotropic constituent of the plant Cannabis sativa and marijuana, Δ9‐tetrahydrocannabinol, exerts its pharmacological effects by activating two G protein coupled cannabinoid receptors.1These are the CB1 receptor, present in central and peripheral nerves (including the human enteric nervous system), and the CB2 receptor, expressed abundantly in immune cells. In rodents, CB1 receptor immunoreactivity has been detected in discrete nuclei of the dorsovagal complex (involved in emesis), and in efferents from the vagal ganglia and in enteric (myenteric and submucosal) nerve terminals where they inhibit excitatory (mainly cholinergic) neurotransmission. In vivo pharmacological studies have shown that activation of CB1 receptors reduces emesis, produces inhibition of gastric acid secretion8 and relaxation of the lower oesophageal sphincter (two effects that might be beneficial in the treatment of gastro‐oesophageal reflux disease), and inhibits intestinal motility and secretion. Consistent with immunohistochemical data showing that CB2 receptors are particularly evident in colonic tissues from patients with inflammatory bowel diseases (IBD), evidence suggests that CB2 inhibits intestinal motility during certain pathological states.1″
“…endocannabinoids convey protection from enteric hypersecretory states (for example, cholera toxin induced diarrhoea), which is in agreement with anecdotal reports from folk medicine on the use of Cannabis sativa in the treatment of diarrhoea.“
“Overactivity of the endocannabinoid system is becoming a well established concept in human intestinal conditions with an inflammatory component”
“The inhibitory effects of cannabinoids on intestinal inflammation, as well as on intestinal motility and secretory diarrhoea, observed in preclinical studies, increase the potential for their use in the treatment of IBD”
“There is great potential for the development of new therapeutic agents against intestinal inflammation from the endocannabinoid system”
“Conclusions: new therapies for the treatment of IBD from the endocannabinoid system”
Cannabinoids in intestinal inflammation and cancer.
Abstract
“Emerging evidence suggests that cannabinoids may exert beneficial effects in intestinal inflammation and cancer. Adaptive changes of the endocannabinoid system have been observed in intestinal biopsies from patients with inflammatory bowel disease and colon cancer. Studies on epithelial cells have shown that cannabinoids exert antiproliferative, antimetastatic and apoptotic effects as well as reducing cytokine release and promoting wound healing. In vivo, cannabinoids – via direct or indirect activation of CB(1) and/or CB(2) receptors – exert protective effects in well-established models of intestinal inflammation and colon cancer. Pharmacological elevation of endocannabinoid levels may be a promising strategy to counteract intestinal inflammation and colon cancer.”
Marijuana Has Anti-Inflammatory That Won’t Get You High
“Marijuana supporters have long argued that the plant’s active ingredients, known as cannabinoids, are safe and effective treatments for pain, nausea, and other ailments.
The most active cannabinoid—delta-9-tetrahydrocannabinol, or THC—is known to have anti-inflammatory properties. But it is also responsible for the plant’s psychotropic effects.
Now researchers say that another cannabinoid, called beta-caryophyllene, or (E)-BCP, helps combat inflammation without affecting the brain.
(E)-BCP is already part of many people’s daily diets, the researchers note. Foods that are particularly high in the compound include black pepper, oregano, basil, lime, cinnamon, carrots, and celery.
Essential oils from cannabis plants—whose leaves and flowers are used to make the marijuana drug—contain up to 35 percent (E)-BCP.”
http://news.nationalgeographic.com/news/2008/06/080624-marijuana.html
Cannabinoids and the digestive tract.
“In the digestive tract there is evidence for the presence of high levels of endocannabinoids (anandamide and 2-arachidonoylglycerol) and enzymes involved in the synthesis and metabolism of endocannabinoids. Immunohistochemical studies have shown the presence of CB1 receptors on myenteric and submucosal nerve plexuses along the alimentary tract. Pharmacological studies have shown that activation of CB1 receptors produces relaxation of the lower oesophageal sphincter, inhibition of gastric motility and acid secretion, as well as intestinal motility and secretion. In general, CB1-induced inhibition of intestinal motility and secretion is due to reduced acetylcholine release from enteric nerves. Conversely, endocannabinoids stimulate intestinal primary sensory neurons via the vanilloid VR1 receptor, resulting in enteritis and enhanced motility. The endogenous cannabinoid system has been found to be involved in the physiological control of colonic motility and in some pathophysiological states, including paralytic ileus, intestinal inflammation and cholera toxin-induced diarrhoea. Cannabinoids also possess antiemetic effects mediated by activation of central and peripheral CB1 receptors.
Pharmacological modulation of the endogenous cannabinoid system could provide a new therapeutic target for the treatment of a number of gastrointestinal diseases, including nausea and vomiting, gastric ulcers, secretory diarrhoea, paralytic ileus, inflammatory bowel disease, colon cancer and gastro-oesophageal reflux conditions.”
Differential expression of cannabinoid receptors in the human colon: cannabinoids promote epithelial wound healing.
Abstract
“BACKGROUND & AIMS:
Two G-protein-coupled cannabinoid receptors, termed CB1 and CB2, have been identified and several mammalian enteric nervous systems express CB1 receptors and produce endocannabinoids. An immunomodulatory role for the endocannabinoid system in gastrointestinal inflammatory disorders has been proposed and this study sought to determine the location of both cannabinoid receptors in human colon and to investigate epithelial receptor function.
METHODS:
The location of CB1 and CB2 receptors in human colonic tissue was determined by immunohistochemistry. Primary colonic epithelial cells were treated with both synthetic and endogenous cannabinoids in vitro, and biochemical coupling of the receptors to known signaling events was determined by immunoblotting. Human colonic epithelial cell lines were used in cannabinoid-binding studies and as a model for in vitro wound-healing experiments.
RESULTS:
CB1-receptor immunoreactivity was evident in normal colonic epithelium, smooth muscle, and the submucosal myenteric plexus. CB1- and CB2-receptor expression was present on plasma cells in the lamina propria, whereas only CB2 was present on macrophages. CB2 immunoreactivity was seen in the epithelium of colonic tissue characteristic of inflammatory bowel disease. Cannabinoids enhanced epithelial wound closure either alone or in combination with lysophosphatidic acid through a CB1-lysophosphatidic acid 1 heteromeric receptor complex.
CONCLUSIONS:
CB1 receptors are expressed in normal human colon and colonic epithelium is responsive biochemically and functionally to cannabinoids. Increased epithelial CB2-receptor expression in human inflammatory bowel disease tissue implies an immunomodulatory role that may impact on mucosal immunity.”