Endocannabinoid system in irritable bowel syndrome and cannabis as a therapy.

Complementary Therapies in Medicine“Irritable bowel syndrome (IBS) global burden is underestimated despite its high prevalence. It’s a gastrointestinal disease having obscure pathophysiology with multiple therapies yet unsatisfactory remedies.

The Endocannabinoid system (ECS) of our body plays a key role in maintaining normal physiology of the gastrointestinal tract as well as involves abnormalities including functional diseases like IBS. This review highlights the importance of the Endocannabinoid system, its connections with the normal gastrointestinal functions and abnormalities like IBS.

It also discusses the role of cannabis as medical therapy in IBS patients.

A literature search for articles related to endocannabinoids in IBS and medical cannabis in PubMed and Google Scholar was conducted. The studies highlighted the significant participation of ECS in IBS. However, the breach in obtaining the promising therapeutic model for IBS needed further investigation in ECS and uncover other treatments for IBS.

This review summarizes ECS, highlights the relationship of ECS with IBS and explores cannabis as a potential therapy to treat IBS.”

https://www.ncbi.nlm.nih.gov/pubmed/31987224

https://www.sciencedirect.com/science/article/pii/S0965229919310179?via%3Dihub

Cannabinoids and Opioids in the Treatment of Inflammatory Bowel Diseases.

Image result for clinical and translational gastroenterology“In traditional medicine, Cannabis sativa has been prescribed for a variety of diseases. Today, the plant is largely known for its recreational purpose, but it may find a way back to what it was originally known for: a herbal remedy. Most of the plant’s ingredients, such as Δ-tetrahydrocannabinol, cannabidiol, cannabigerol, and others, have demonstrated beneficial effects in preclinical models of intestinal inflammation. Endogenous cannabinoids (endocannabinoids) have shown a regulatory role in inflammation and mucosal permeability of the gastrointestinal tract where they likely interact with the gut microbiome. Anecdotal reports suggest that in humans, Cannabis exerts antinociceptive, anti-inflammatory, and antidiarrheal properties. Despite these reports, strong evidence on beneficial effects of Cannabis in human gastrointestinal diseases is lacking. Clinical trials with Cannabis in patients suffering from inflammatory bowel disease (IBD) have shown improvement in quality of life but failed to provide evidence for a reduction of inflammation markers. Within the endogenous opioid system, mu opioid receptors may be involved in anti-inflammation of the gut. Opioids are frequently used to treat abdominal pain in IBD; however, heavy opioid use in IBD is associated with opioid dependency and higher mortality. This review highlights latest advances in the potential treatment of IBD using Cannabis/cannabinoids or opioids.”

https://www.ncbi.nlm.nih.gov/pubmed/31899693

https://journals.lww.com/ctg/Abstract/latest/Cannabinoids_and_Opioids_in_the_Treatment_of.99898.aspx

Gastrointestinal Adverse Events of Cannabinoid 1 Receptor Inverse Agonists suggest their Potential Use in Irritable Bowel Syndrome with Constipation: A Systematic Review and Meta-Analysis.

 Image result for J Gastrointestin Liver Dis“Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal (GI) disorders characterized by pain and impaired bowel movements. Currently available drugs show limited efficacy.

Cannabinoid 1 receptor (CB1) inverse agonists (CB1-RAN) cause diarrhea and may be candidates for the treatment of constipation-predominant IBS (IBS-C). We evaluated the effects of CB1-RAN in clinical trials for their potential use in IBS-C.

METHODS:

Database search identified all clinical trials published up to May 2018 that reported rimonabant and taranabant treatment for at least one month and detailed the GI adverse events (AEs). Categorical outcomes (subgroups of AEs) were analyzed using the odds ratio (OR).

RESULTS:

Eighteen trials met the inclusion criteria. Rimonabant 20 mg produced significantly more overall AEs (OR=1.35, CI: 1.19-1.52, p<0.0001), psychiatric events (OR=1.79, CI: 1.46-2.21, p<0.001) and GI AEs (OR=2.05, CI: 1.65-2.55, p<0.001) compared to placebo. Taranabant at doses ranging from 0.5 to 8 mg produced significantly more overall AEs (OR=1.36, CI: 1.13-1.64, p<0.002), psychiatric AEs (1.82, CI: 1.54-2.16, p<0.001) and GI AEs (OR=1.75, CI: 1.29-2.37, p<0.001) compared to placebo.

CONCLUSIONS:

The approach to target CB1 in the gut for the treatment of IBS-C or chronic constipation seems a promising therapeutic option. Prospective clinical trials on the possible targeting of CB1 and the endocannabinoid system are warranted.”

https://www.ncbi.nlm.nih.gov/pubmed/31826058

https://www.jgld.ro/jgld/index.php/jgld/article/view/265

The Endocannabinoid System in Pediatric Inflammatory and Immune Diseases.

 ijms-logo“Endocannabinoid system consists of cannabinoid type 1 (CB1) and cannabinoid type 2 (CB2) receptors, their endogenous ligands, and the enzymes responsible for their synthesis and degradation. CB2, to a great extent, and CB1, to a lesser extent, are involved in regulating the immune response. They also regulate the inflammatory processes by inhibiting pro-inflammatory mediator release and immune cell proliferation. This review provides an overview on the role of the endocannabinoid system with a major focus on cannabinoid receptors in the pathogenesis and onset of inflammatory and autoimmune pediatric diseases, such as immune thrombocytopenia, juvenile idiopathic arthritis, inflammatory bowel disease, celiac disease, obesity, neuroinflammatory diseases, and type 1 diabetes mellitus. These disorders have a high social impact and represent a burden for the healthcare system, hence the importance of individuating more innovative and effective treatments. The endocannabinoid system could address this need, representing a possible new diagnostic marker and therapeutic target.”

https://www.ncbi.nlm.nih.gov/pubmed/31771129

https://www.mdpi.com/1422-0067/20/23/5875

Medical cannabis for inflammatory bowel disease: real-life experience of mode of consumption and assessment of side-effects.

 

Image result for ovid journal“Use of medical cannabis for improving symptoms of inflammatory bowel disease is increasing. However, reports on long-term outcomes are lacking. This prospective, observational study assessed the effects of licensed cannabis use among patients with inflammatory bowel disease.

METHODS:

Dose and mode of consumption, adverse events, use of other medications, and long-term effects were evaluated among 127 patients with inflammatory bowel disease using legalized medical cannabis. Blood count, albumin, and C-reactive protein were assessed before, 1 month, and at least 1 year after medical cannabis therapy was initiated. Questionnaires on disease activity, patient function, and signs of addiction were completed by patients and by a significant family member to assess its effects.

RESULTS:

The average dose used was 31 ± 15 g/month. The average Harvey-Bradshaw index improved from 14 ± 6.7 to 7 ± 4.7 (P < 0.001) during a median follow-up of 44 months (interquartile range, 24-56 months). There was a slight, but statistically significant, average weight gain of 2 kg within 1 year of cannabis use. The need for other medications was significantly reduced. Employment among patients increased from 65 to 74% (P < 0.05). We conclude that the majority of inflammatory bowel disease patients using cannabis are satisfied with a dose of 30 g/month. We did not observe negative effects of cannabis use on the patients’ social or occupational status.

CONCLUSIONS:

Cannabis use by inflammatory bowel disease patients can induce clinical improvement and is associated with reduced use of medication and slight weight gain. Most patients respond well to a dose of 30 g/month, or 21 mg Δ9-tetra- hydrocannabinol (THC) and 170 mg Cannabidiol (CBD) per day.”

Insights into the role of cannabis in the management of inflammatory bowel disease.

Image result for therapeutic advances in gastroenterology“Cannabis, a drug made up of the flowers and buds of the Cannabis sativa plant, has been used therapeutically for centuries. Ancient Chinese cultures have reported use in their medical practices, dating back as early as 2700 BC.  Although widely used recreationally during the 19th and 20th centuries, the use of medical cannabis has exploded over the last decade, as a result of mainstream cultural acceptance and legalization in several countries around the world.

Over the last decade, interest in the therapeutic potential of cannabis and its constituents (e.g. cannabidiol) in the management of inflammatory bowel diseases (IBD) has escalated. Cannabis has been increasingly approved for a variety of medical conditions in several jurisdictions around the world.

In animal models, cannabinoids have been shown to improve intestinal inflammation in experimental models of IBD through their interaction with the endocannabinoid system. However, the few randomized controlled trials of cannabis or cannabidiol in patients with IBD have not demonstrated efficacy in modulating inflammatory disease activity.

Cannabis may be effective in the symptomatic management of IBD. Given the increasing utilization and cultural acceptance of cannabis, physicians need to be aware of its safety and efficacy in order to better counsel patients. The aim of this review is to provide an overview of the role of cannabis in the management of patients with IBD.

There is emerging evidence that cannabis may play a role in the management of patients with IBD. Many patients are already using cannabis to help manage symptoms associated with the disease, and physicians cannot ignore this when taking histories and managing their patients.”

https://www.ncbi.nlm.nih.gov/pubmed/31523278

https://journals.sagepub.com/doi/10.1177/1756284819870977

Association between cannabis use and complications related to ulcerative colitis in hospitalized patients: A propensity matched retrospective cohort study.

 Image result for wolters kluwer“Ulcerative colitis (UC) is a chronic inflammatory process that is occasionally associated with complications that cause significant morbidity and mortality.

Studies in experimental animal models have demonstrated a beneficial effect of cannabis on intestinal inflammation. It is however unknown if this corresponds to fewer complications for patients with Ulcerative Colitis.

We aimed to compare the prevalence of UC related complications and certain key clinical endpoints among cannabis users and nonusers hospitalized with a primary diagnosis of UC, or primary diagnosis of a UC-related complication with a secondary diagnosis of UC. Using data from the Healthcare Cost and Utilization Project-National Inpatient Sample (NIS) during 2010-2014, a total of 298 cannabis users with UC were compared to a propensity score matched group of nonusers with UC. We evaluated several UC-related complications and clinical endpoints.

Within our matched cohort, prevalence of partial or total colectomy was lower in cannabis users compared to nonusers (4.4% vs 9.7%, P = .010) and there was a trend toward a lower prevalence of bowel obstruction (6.4% vs 10.7%, P = .057). 

Cannabis users had shorter hospital length-of-stay (4.5 vs 5.7 days P < .007) compared to their nonuser counterparts.

Cannabis use may mitigate some of the well described complications of UC among hospitalized patients. Our findings need further evaluation, ideally through more rigorous clinical trials.”

https://www.ncbi.nlm.nih.gov/pubmed/31393356

https://insights.ovid.com/crossref?an=00005792-201908090-00016

Is Cannabis of Potential Value as a Therapeutic for Inflammatory Bowel Disease?

“Cannabis is commonly used by patients with inflammatory bowel disease (IBD) to ameliorate their symptoms.

Patients claim that cannabis reduces pain, increases appetite, and reduces the need for other medications.

In conclusion, considering the mechanism of action of phytocannabinoids and the accumulating evidence of their anti-inflammatory effects in experimental and in vitro studies, it is reasonable to assume that cannabis can be of benefit in the treatment of IBD.”

https://www.ncbi.nlm.nih.gov/pubmed/31388856

https://link.springer.com/article/10.1007%2Fs10620-019-05763-8

In-hospital outcomes of inflammatory bowel disease in cannabis users: a nationwide propensity-matched analysis in the United States.

“Literature suggests the role of cannabis (marijuana) as an anti-inflammatory agent. However, the impact of recreational marijuana usage on in-hospital outcomes of inflammatory bowel disease (IBD) remains indistinct.

We assessed the outcomes of Crohn’s disease (CD) as well as ulcerative colitis (UC) with vs. without recreational marijuana usage using a nationally illustrative propensity-matched sample.

RESULTS:

Propensity-matched cohorts included 6,002 CD (2,999 cannabis users & 3,003 non-users) and 1,481 UC (742 cannabisusers & 739 non-users) hospitalizations. In CD patients, prevalence of colorectal cancer (0.3% vs. 1.2%, P<0.001), need for parenteral nutrition (3.0% vs. 4.7%, P=0.001) and anemia (25.6% vs. 30.1%, P<0.001) were lower in cannabis users. However, active fistulizing disease or intraabdominal abscess formation (8.6% vs. 5.9%, P<0.001), unspecific lower gastrointestinal (GI) hemorrhage (4.0% vs. 2.7%, P=0.004) and hypovolemia (1.2% vs. 0.5%, P=0.004) were higher with recreational cannabis use. The mean hospital stay was shorter (4.2 vs. 5.0 days) with less hospital charges ($28,956 vs. $35,180, P<0.001) in cannabis users. In patients with UC, cannabis users faced the higher frequency of fluid and electrolyte disorders (45.1% vs. 29.6%, P<0.001), and hypovolemia (2.7% vs.<11) with relatively lower frequency of postoperative infections (<11 vs. 3.4%, P=0.010). No other complications were significant enough for comparison between the cannabis users and non-users in this group. Like CD, UC-cannabis patients had shorter mean hospital stay (LOS) (4.3 vs. 5.7 days, P<0.001) and faced less financial burden ($30,393 vs. $41,308, P<0.001).

CONCLUSIONS:

We found a lower frequency of colorectal cancer, parenteral nutrition, anemia but a higher occurrences of active fistulizing disease or intraabdominal abscess formation, lower GI hemorrhage and hypovolemia in the CD cohort with cannabis usage. In patients with UC, frequency of complications could not be compared between the two cohorts, except a higher frequency of fluid and electrolyte disorders and hypovolemia, and a lower frequency of postoperative infections with cannabis use. A shorter length of stay (LOS)  and lesser hospital charges were observed in both groups with recreational marijuana usage.”

https://www.ncbi.nlm.nih.gov/pubmed/31355219

http://atm.amegroups.com/article/view/25637/24217

Cannabis and cannabinoids on treatment of inflammation: a patent review

The inflammatory process is a physiological response to a vast number harmful stimulus that takes place in order to restore homeostasis. Many drugs used in pharmacotherapy are effective to control inflammatory responses, however there is a range of adverse effects attributed to steroidal and non-steroidal anti-inflammatory drugs (NSAIDs).

In this sense, herbal medicine and derivatives gain more adepts because of their effectiveness and safety, showing the importance of medicinal plants, especially the Cannabis genus and the cannabinoid derivatives.
The aim of this prospection was to identify data related to patents involving Cannabis and cannabinoids for the treatment of inflammation.
A total of 370 patents were found, of which 17 patents met the inclusion criteria.
Although reports show synergistic effects of the plant components, patents involving Cannabis and cannabinoids focus on isolated substances (CBD e THC). However, patents related to Cannabis and cannabinoids are promising for future use of the plant or its derivatives on the treatment of inflammation.”
“Cannabis-based drugs have been shown to be effective in inflammatory diseases.” https://www.ncbi.nlm.nih.gov/pubmed/29110674
“Cannabinoid-based drugs as anti-inflammatory therapeutics.” http://www.ncbi.nlm.nih.gov/pubmed/15864274