The use of cannabinoid therapy in treatment-refractory isolated REM sleep behavior disorder: a case report

pubmed logo

“Current treatments for rapid eye movement (REM) sleep behavior disorder (RBD) are not always effective and can lead to dose-limited adverse events, and new treatments are needed for this condition.

We present a case of a patient with treatment-refractory isolated RBD who had a dramatic and sustained improvement in dream enactment behaviors using oral tinctures containing cannabidiol and tetrahydrocannabinol without adverse events over 5 years of follow-up.”

https://pubmed.ncbi.nlm.nih.gov/40130438/

https://jcsm.aasm.org/doi/10.5664/jcsm.11704

Low doses of cannabis extract ameliorate non-motor symptoms of Parkinson’s disease patients: a case series

pubmed logo

“Introduction: Parkinson’s disease (PD) is mainly characterized by motor symptoms including muscle rigidity, resting tremor and bradykinesia. However, the management of the non-motor symptoms represent a relevant clinical challenger in PD. These non-motor symptoms include cognitive and sleep disturbance and there is evidence that cannabinoids may represent alternative and effective treatments for non-motor symptoms of PD.

Methods: Therefore, this study addressed the effects of oral treatment with cannabis extract on cognition, insomnia, and daytime sleepiness in six patients with moderate PD. The patients were randomized to receive two different doses of a cannabis extract: THC:CBD 250:28 μg/day (n = 3) or 1000:112 μg/day (n = 3). The assessment of cannabis administration related to the cognitive field was measured by the Montreal Cognitive Assessment test (MoCA test), the insomnia was assessed by the Insomnia Severity Index (ISI), and daytime sleepiness was assessed using the Epworth sleepiness scale (ESS). All clinical evaluations were performed before treatment and at 15, 30, 60, and 90 days of treatment.

Results: The statistical analysis indicated a significant benefit of the cannabis extract treatment, at dose of 1000:112 μg/day after 60 days of treatment, on insomnia assessed by ISI. Moreover, the statistical analysis of data from ISI and MoCA tests showed a trend toward improvement over time, while no significant effect was observed in the ESS. There were no reports of significant adverse effects during the cannabis extract treatment.

Discussion: These results demonstrate benefits of short-time treatment (60 days) with low doses of cannabis extract on insomnia in PD patients. This study provide novel findings of the potential of combining CBD and THC as safe and effective treatments for non-motor symptoms of PD.”

https://pubmed.ncbi.nlm.nih.gov/40066073/

“In conclusion, these results demonstrate a possible benefit of short-time treatment (3 months) with low doses of cannabis extract on cognition and insomnia in PD patients. This study provide novel findings of the potential of combining CBD and THC as safe and effective treatments for non-motor symptoms of PD.”

https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2024.1466438/full

Effectiveness of a Cannabinoids Supplement on Sleep and Mood in Adults With Subthreshold Insomnia: A Randomized Double-Blind Placebo-Controlled Crossover Pilot Trial

pubmed logo

“Background and aims: Conduct a pilot randomized double-blind placebo-controlled crossover trial for adults with subthreshold insomnia symptoms to examine the effectiveness of a cannabinoids supplement on sleep quality and health outcomes.

Methods: Adults with subthreshold insomnia symptoms (N = 20, Mage = 47.40) were randomized to either the Cannabinoids Supplement (CS) or Placebo Condition (PC) for 10 days. The CS was an oral soft gel that contained 3 mg Δ9-tetrahydrocannabinol, 6 mg cannabinol, 10 mg cannabidiol, and 90 mg of a proprietary food-grade terpene blend. Following a 2-week washout, they completed the alternate condition. The following validated questionnaires were collected at baseline and following each condition: Insomnia Severity Index, Pittsburgh Sleep Quality Index, Bergen Insomnia Scale, Profile of Mood States (POMS), Perceived Stress Scale, Pain and Sleep Questionnaire. Trait Anxiety Inventory, Flinders Daytime Fatigue, and Health-related Quality of Life Scale. Clinical trial registry number = ISRCTN 15022302.

Results: When compared to PC, the CS Condition had significantly improved sleep quality/efficiency, insomnia symptoms, and health-related quality of life, p < 0.05. Nonsignificant improvements for the CS compared to the PC were found for the POMS mood subscales of tension, anger, fatigue, depression, and vigor, as well as anxiety. The Esteem subscale improved significantly from Baseline to Post for the PC. Both the CS and PC Vigor improved significantly from baseline. Anxiety improved significantly from Baseline to Post for the CS. No adverse events reported.

Conclusion: This cannabinoid-based formulation was a well-tolerated oral supplement that may improve adults’ sleep quality/efficiency and health-related quality of life. Larger controlled trials are encouraged to examine the longer-term effects of this supplement in a variety of populations and environments.”

https://pubmed.ncbi.nlm.nih.gov/39980821/

https://onlinelibrary.wiley.com/doi/10.1002/hsr2.70481

Medical Cannabis for Patients Over Age 50: A Multi-site, Prospective Study of Patterns of Use and Health Outcomes

pubmed logo

“Objective: Cannabis is being used as a therapeutic option by patients around the globe, and older patients represent a rapidly growing subset of this population. This study aims to assess the patterns of medical cannabis use in patients over 50 years of age and its effect on health outcomes such as pain, sleep, quality of life, and co-medication.

Method: The Medical Cannabis in Older Patients Study (MCOPS) is a multi-site, prospective observational study examining the real-world impact of medical cannabis use on patients over age 50 under the guidance of a health care provider. The study included validated instruments, with treating physicians collecting detailed data on participant characteristics, medical cannabis and co-medication use, and associated impacts on pain, sleep, quality of life, as well as adverse events.

Results: Inclusion criteria were met by 299 participants. Average age of participants was 66.7 years, and 66.2% of respondents identified as female. Approximately 90% of patients used medical cannabis to treat pain-related conditions such as chronic pain and arthritis. Almost all patients reported a preference for oral cannabis products (e.g., extracts, edibles) rather than inhalation products (e.g., flower, vapes), and most preferred oral formulations high in cannabidiol and low in tetrahydrocannabinol.

Over the six-month study period, significant improvements were noted in pain, sleep, and quality of life measures, with 45% experiencing a clinically meaningful improvement in pain interference and in sleep quality scores. Additionally, nearly 50% of patients taking co-medications at baseline had reduced their use by the end of the study period, and quality of life improved significantly from baseline to M3 and from baseline to M6, with an incremental cost per quality-adjusted life-year (QALY) of $25,357.20. No serious adverse events (SAEs) were reported.

Conclusions: In this cohort of older patients, most of whom suffered from pain-related conditions, medical cannabis seemed to be a safe and effective treatment. Most patients experienced clinically significant improvements in pain, sleep, and quality of life and reductions in co-medication. The cost per QALY was well below the standard for traditional pharmaceuticals, and no SAEs were reported, suggesting that cannabis is a relatively safe and cost-effective therapeutic option for adults dealing with age-related health conditions.”

https://pubmed.ncbi.nlm.nih.gov/39968489/

https://publications.sciences.ucf.edu/cannabis/index.php/Cannabis/article/view/239

Exploring β-caryophyllene: a non-psychotropic cannabinoid’s potential in mitigating cognitive impairment induced by sleep deprivation

pubmed logo

“Sleep deprivation or sleep loss, a prevalent issue in modern society, is linked to cognitive impairment, leading to heightened risks of errors and accidents. Chronic sleep deprivation affects various cognitive functions, including memory, attention, and decision-making, and is associated with an increased risk of neurodegenerative diseases, cardiovascular issues, and metabolic disorders.

This review examines the potential of β-caryophyllene, a dietary non-psychotropic cannabinoid, and FDA-approved flavoring agent, as a therapeutic solution for sleep loss-induced cognitive impairment. It highlights β-caryophyllene’s ability to mitigate key contributors to sleep loss-induced cognitive impairment, such as inflammation, oxidative stress, neuronal death, and reduced neuroplasticity, by modulating various signaling pathways, including TLR4/NF-κB/NLRP3, MAPK, Nrf2/HO-1, PI3K/Akt, and cAMP/PKA/CREB.

As a naturally occurring, non-psychotropic compound with low toxicity, β-caryophyllene emerges as a promising candidate for further investigation. The review underscores the therapeutic potential of β-caryophyllene for sleep loss-induced cognitive impairment and provides mechanistic insights into its action on crucial pathways, suggesting that β-caryophyllene could be a valuable addition to strategies aimed at combating cognitive impairment and other health issues due to sleep loss.”

https://pubmed.ncbi.nlm.nih.gov/39653971/

https://link.springer.com/article/10.1007/s12272-024-01523-z

“Beta-caryophyllene is a dietary cannabinoid.” https://www.ncbi.nlm.nih.gov/pubmed/18574142

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”   http://www.ncbi.nlm.nih.gov/pubmed/23138934


Cannabis use, sleep and mood disturbances among persons with epilepsy – A clinical and polysomnography study from a Canadian tertiary care epilepsy center

pubmed logo

“Objective: Interest in anti-seizure properties of cannabinoids is increasing, with the rise in prevalence of recreational and medical cannabis use, especially across Canada. In a recent study on people with epilepsy (PWE), cannabis use showed a strong association with poor psychosocial health. Sleep and mood comorbidities are highly prevalent in epilepsy, and are common motivations for cannabis use. The primary objective of this study was to assess demographic, subjective and objectively assessed sleep quality and mood related differences among PWE who regularly use cannabis compared to those who do not.

Methods: Consecutive consenting patients with a confirmed epilepsy diagnosis, admitted to our Epilepsy Monitoring Unit, over a 3-year period (2019-2022) were enrolled. Detailed epilepsy-related data and self-reported sleep [Pittsburgh Sleep quality index (PSQI)], Epworth Sleepiness Scale (ESS)], mood [(Beck’s Depression Inventory (BDI) and Beck’s Anxiety inventory (BAI)] and cannabis use related data were collected. Overnight polysomnography (PSG) was conducted on the first night of admission, with simultaneous 18-channel video-EEG. Sleep (PSG) scoring followed American Academy of Sleep Medicine guidelines by a scorer blinded to clinical details.

Results: Among 51 patients with similar seizure control, 25 (13 F) reported cannabis use (mean age 36.3+14.8 years) and were significantly younger than 26 (18 F) non-users (mean age 48.3+15 years). Cannabis users had significantly better subjective sleep quality (mean PSQI scores 7.2+2.9 vs 10.2+5.2 respectively). Most patients endorsed sleepiness (Cannabis users with ESS scores greater than 10; 91.3 %, 77.3 % in non-users) and moderate to extreme depression (BDI) scores. No significant differences were observed in objective sleep parameters. BDI score significantly predicted PSQI and ESS scores on multiple logistic regression analysis.

Significance: Despite a significant age difference, self-reported sleep quality is better among PWE who report regular cannabis use compared to non-users. However, there is no significant difference in objective sleep quantity and quality from PSG between the two groups. Additionally, severity of depressive symptoms is a significant predictor of sleep quality and of excessive daytime sleepiness among PWE.”

https://pubmed.ncbi.nlm.nih.gov/39586190/

https://www.sciencedirect.com/science/article/pii/S0920121124001943?via%3Dihub

UK medical cannabis registry: A clinical outcome analysis of medical cannabis therapy in chronic pain patients with and without co-morbid sleep impairment

pubmed logo

“Introduction: Chronic pain (CP) affects 35.0%-51.3% of the UK population, with 67%-88% reporting sleep disturbances. Cannabis-based medicinal products (CBMPs) have shown therapeutic potential in managing CP. Evidence suggests poor sleep worsens pain perception; therefore, this study aimed to assess patient-reported outcome measures (PROMs) following CBMP treatment in CP patients with and without co-morbid sleep impairment.

Methods: A prospective cohort study of CP patients from the UK Medical Cannabis Registry was conducted. Participants were separated by baseline single-item sleep quality scale (SQS) score into sleep impaired (SQS ≤3) and unimpaired (SQS ≥4) cohorts. The primary outcome assessed changes in PROMs from baseline to 1-, 3-, 6-, and 12-months. Participants completed the following: SQS, General Anxiety Disorder-7, EQ-5D-5L, Brief Pain Inventory (BPI), and Short-Form McGill Pain Questionnaire-2. Significance was defined as p < 0.050.

Results: 1139 participants met the inclusion criteria (sleep impaired: n = 517, 45.4%; sleep unimpaired: n = 622, 54.61%). The sleep impaired cohort showed improvements in all PROMs at each follow-up (p < 0.010). The sleep unimpaired cohort showed similar results (p < 0.050), except in SQS and ED-5Q-5L: self-care and anxiety/depression scores (p > 0.050). However, the sleep impaired cohort observed greater improvements in BPI pain severity (p < 0.050) and SQS (p < 0.001) than the sleep unimpaired cohort at all follow-ups. 2817 adverse events were self-reported between both cohorts (p = 0.197).

Discussion: These findings align with literature that shows associated improvements in pain outcomes following CBMP administration. Sleep impaired individuals were more likely to experience greater pain severity improvements. However, this was not confirmed on multivariate logistic regression analysis and instead may be confounded by baseline pain severity.

Conclusion: Whilst these results show promise for the effects of CBMPs on CP, they must be examined within the limitations of the study design. These findings provide further evidence to support the design of subsequent randomized controlled trials to verify causality between CBMPs and pain outcomes.”

https://pubmed.ncbi.nlm.nih.gov/39545361/

“The results of this observational cohort study suggest an association between CBMP treatment and improvement in pain-specific and HRQoL PROMs in CP patients with and without co-morbid sleep impairment. Notably, those with co-morbid sleep impairment were associated with greater improvements in BPI pain severity, SQS, and PGIC than those without. However, this finding was not confirmed on multivariate analysis. Reported sleep quality did improve across the cohort from baseline, and when present was also associated with improvements in pain severity, suggesting that the effects of CBMPs on sleep may provide additional benefits for individuals with chronic pain beyond affecting the transmission of nociceptive signals. At the onset of treatment, however, other variables may be better prognostic markers for response to CBMP treatment, such as severe pain or anxiety at baseline. With respect to clinical significance, 44.10% report an improvement in the sleep impaired cohort at 1-months, declining to 24.56% at 12-months. Despite being limited by its observational design, the present study can be used to inform future RCTs, in addition to current clinical practice.”

https://onlinelibrary.wiley.com/doi/10.1111/papr.13438

A sleepy cannabis constituent: cannabinol and its active metabolite influence sleep architecture in rats

pubmed logo

“Medicinal cannabis is being used worldwide and there is increasing use of novel cannabis products in the community. Cannabis contains the major cannabinoids, Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), but also an array of minor cannabinoids that have undergone much less pharmacological characterization.

Cannabinol (CBN) is a minor cannabinoid used in the community in “isolate’ products and is claimed to have pro-sleep effects comparable to conventional sleep medications. However, no study has yet examined whether it impacts sleep architecture using objective sleep measures. The effects of CBN on sleep in rats using polysomnography were therefore examined.

CBN increased total sleep time, although there was evidence of biphasic effects with initial sleep suppression before a dramatic increase in sleep. CBN increased both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. The magnitude of the effect of CBN on NREM was comparable to the sleep aid zolpidem, although, unlike CBN, zolpidem did not influence REM sleep.

Following CBN dosing, 11-hydroxy-CBN, a primary metabolite of CBN surprisingly attained equivalently high brain concentrations to CBN. 11-hydroxy-CBN was active at cannabinoid CB1 receptors with comparable potency and efficacy to Δ9-THC, however, CBN had much lower activity. We then discovered that the metabolite 11-hydroxy-CBN also influenced sleep architecture, albeit with some subtle differences from CBN itself.

This study shows CBN affects sleep using objective sleep measures and suggests an active metabolite may contribute to its hypnotic action.”

https://pubmed.ncbi.nlm.nih.gov/39528623/

“In conclusion, for close to 50 years there has been the suggestion that the minor plant cannabinoid CBN increases sleep without any robust scientific evidence based on objective sleep measures. This study provides the first objective evidence that CBN influences sleep architecture and that its hypnotic effects may involve an active metabolite.”

https://www.nature.com/articles/s41386-024-02018-7

“Study confirms what cannabis users have long known. Study may lead to new treatment for sleep disorders like insomnia, researchers say”

https://www.independent.co.uk/news/science/cannabis-use-sleep-link-compound-b2646151.html

Controlled Inhalation of Tetrahydrocannabinol-Predominant Cannabis Flos Mitigates Severity of Post-Traumatic Stress Disorder Symptoms and Improves Quality of Sleep and General Mood in Cannabis-Experienced UK Civilians: A Real-World, Observational Study

pubmed logo

“Introduction: Approximately 4% of the UK population experiences PTSD. Individuals must exhibit symptoms across four clusters to receive a diagnosis: intrusion, avoidance, altered reactivity, and altered mood. Evidence suggests that cannabinoid agonists such as nabilone and tetrahydrocannabinol (THC) may alleviate PTSD symptoms. We investigated the safety and effectiveness of THC-predominant cannabis flowers for inhalation to manage PTSD symptoms in a real-world setting.

Methods: We analysed data from the UK patient registry, T21. Validated questionnaires were used to collect PROMs for health-related quality of life (HRQoL), mood/anxiety, sleep, and PTSD-specific symptoms. Inclusion criteria were (i) a confirmed diagnosis of PTSD, (ii) completed PROMs questionnaires at baseline and at the 3-month follow-up, and (iii) received a prescription for a chemotype 1 (THC-predominant) cannabis flower.

Results: Fifty-eight patients were included, 34 of which also had PROMs recorded at 6 months. Most were males (65.5%) with an average age of 39.2 years who had previously used cannabis illicitly (95.6%). At 3 months, participants reported significant improvements in overall health, mood, and sleep quality (p < 0.001) but not in the proxy for HRQoL (p = 0.052). Similarly, participants reported substantial benefits in managing intrusion symptoms (p < 0.001), mood alterations (p < 0.001), and reactivity alterations (p = 0.002), which were sustained or further improved at 6 months. Participants did not report any side effects associated with CBMPs.

Conclusions: Inhalation of THC is well tolerated and useful for managing symptoms of PTSD in cannabis-experienced individuals. However, further research is needed to evaluate the long-term safety and outcomes of controlled inhalation of CBMP in patients naïve to cannabis.”

https://pubmed.ncbi.nlm.nih.gov/39474239/

“Results from this observational study suggest an association between treatment with THC-predominant cannabis flowers and symptomatic improvement for up to 6 months in a cohort of UK civilians diagnosed with PTSD. The treatment was safe and well tolerated and characterized by marked effects on quality of sleep, general mood, and severity of PTSD-associated symptoms. Despite previous exposure to cannabis, participants continued to report benefits after initiating treatment with THC-predominant cannabis flowers.”

https://karger.com/mca/article/7/1/149/912500/Controlled-Inhalation-of-Tetrahydrocannabinol

Cannabis-Based Phytocannabinoids: Overview, Mechanism of Action, Therapeutic Application, Production, and Affecting Environmental Factors

pubmed logo

“This review provides an overview of cannabis-based phytocannabinoids, focusing on their mechanisms of action, therapeutic applications, and production processes, along with the environmental factors that affect their quality and efficacy.

Phytocannabinoids such as THC (∆9-tetrahydrocannabinol), CBD (cannabidiol), CBG (cannabigerol), CBN (cannabinol), and CBC (cannabichromene) exhibit significant therapeutic potential in treating various physical and mental health conditions, including chronic pain, epilepsy, neurodegenerative diseases, skin disorders, and anxiety.

The cultivation of cannabis plays a crucial role in determining cannabinoid profiles, with indoor cultivation offering more control and consistency than outdoor methods. Environmental factors such as light, water, temperature, humidity, nutrient management, CO2, and the drying method used are key to optimizing cannabinoid content in inflorescences.

This review outlines the need for broader data transfer between the health industry and technological production, especially in terms of what concentration and cannabinoid ratios are effective in treatment. Such data transfer would provide cultivators with information on what environmental parameters should be manipulated to obtain the required final product.”

https://pubmed.ncbi.nlm.nih.gov/39457041/

“Phytocannabinoids, including THC, CBD, CBG, CBN, and CBC, present broad therapeutic potential in a wide range of physical and mental conditions. They have shown efficacy in treating chronic pain, reducing seizure activity, slowing neurodegenerative processes, psoriasis, acne, loss of appetite, sleep disorders, and psychosis. Dose dependence was notable in most cases, and thus, this requires careful management.”

https://www.mdpi.com/1422-0067/25/20/11258