A Brief Background on Cannabis: From Plant to Medical Indications.

 Ingenta Connect

“Cannabis has been used as a medicinal plant for thousands of years.

As a result of centuries of breeding and selection, there are now over 700 varieties of cannabis that contain hundreds of compounds, including cannabinoids and terpenes.

Cannabinoids are fatty compounds that are the main biological active constituents of cannabis. Terpenes are volatile compounds that occur in many plants and have distinct odors.

Cannabinoids exert their effect on the body by binding to receptors, specifically cannabinoid receptors types 1 and 2. These receptors, together with endogenous cannabinoids and the systems for synthesis, transport, and degradation, are called the Endocannabinoid System.

The two most prevalent and commonly known cannabinoids in the cannabis plant are delta-9-tetrahydrocannabinol (THC) and cannabidiol.

The speed, strength, and type of effects of cannabis vary based on the route of administration. THC is rapidly distributed through the body to fatty tissues like the brain and is metabolized by the cytochrome P450 system to 11-hydroxy-THC, which is also psychoactive.

Cannabis and cannabinoids have been indicated for several medical conditions.

There is evidence of efficacy in the symptomatic treatment of nausea and vomiting, pain, insomnia, post-traumatic stress disorder, anxiety, loss of appetite, Tourette’s syndrome, and epilepsy. Cannabis has also been associated with treatment for glaucoma, Huntington’s Disease, Parkinson’s Disease, and dystonia, but there is not good evidence to support its efficacy. Side effects of cannabis include psychosis and anxiety, which can be severe.

Here, we provided a summary of the history of cannabis, its pharmacology, and its medical uses.”

https://www.ncbi.nlm.nih.gov/pubmed/30139415

Effectiveness of Raw, Natural Medical Cannabis Flower for Treating Insomnia under Naturalistic Conditions.

medicines-logo

“Background: We use a mobile software application (app) to measure for the first time, which fundamental characteristics of raw, natural medical Cannabis flower are associated with changes in perceived insomnia under naturalistic conditions.

Methods: Four hundred and nine people with a specified condition of insomnia completed 1056 medical cannabis administration sessions using the Releaf AppTM educational software during which they recorded real-time ratings of self-perceived insomnia severity levels prior to and following consumption, experienced side effects, and product characteristics, including combustion method, cannabis subtypes, and/or major cannabinoid contents of cannabis consumed. Within-user effects of different flower characteristics were modeled using a fixed effects panel regression approach with standard errors clustered at the user level.

Results: Releaf AppTM users showed an average symptom severity reduction of -4.5 points on a 0⁻10 point visual analogue scale (SD = 2.7, d = 2.10, p < 0.001). Use of pipes and vaporizers was associated with greater symptom relief and more positive and context-specific side effects as compared to the use of joints, while vaporization was also associated with lower negative effects. Cannabidiol (CBD) was associated with greater statistically significant symptom relief than tetrahydrocannabinol (THC), but the cannabinoid levels generally were not associated with differential side effects. Flower from C. sativa plants was associated with more negative side effects than flower from C. indica or hybrid plant subtypes.

Conclusions: Consumption of medical Cannabis flower is associated with significant improvements in perceived insomnia with differential effectiveness and side effect profiles, depending on the product characteristics.”

https://www.ncbi.nlm.nih.gov/pubmed/29997343

http://www.mdpi.com/2305-6320/5/3/75

Systemic Injections of Cannabidiol Enhance Acetylcholine Levels from Basal Forebrain in Rats.

Neurochemical Research

Cannabis sativa is a plant that contains more than 500 components, of which the most studied are Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD). Several studies have indicated that CBD displays neurobiological effects, including wake promotion.

Moreover, experimental evidence has shown that injections of CBD enhance wake-related compounds, such as monoamines (dopamine, serotonin, epinephrine, and norepinephrine). However, no clear evidence is available regarding the effects of CBD on additional wake-related neurochemicals such as acetylcholine (ACh).

Here, we demonstrate that systemic injections of CBD (0, 5, 10 or 30 mg/kg, i.p.) at the beginning of the lights-on period, increase the extracellular levels of ACh collected from the basal forebrain and measured by microdialysis and HPLC means. Moreover, the time course effects on the contents of ACh were present 5 h post-injection of CBD.

Altogether, these data demonstrate that CBD increases ACh levels in a brain region related to wake control. This study is the first to show the effects of ACh levels in CBD-treated rats and suggests that the basal forebrain might be a site of action of CBD for wakefulness modulation.”

https://www.ncbi.nlm.nih.gov/pubmed/29876791

Therapeutic Symptomatic Strategies in the Parasomnias.

Current Treatment Options in Neurology

“The purpose of this review was to discuss the currently available pharmacologic and non-pharmacologic treatment options for parasomnias.

Cannabinoids proved to be effective in some of parasomnias, as in many other neurological disorders.

Prazosin and cannabinoids are effective in nightmare disorder.”

“Parasomnias are a category of sleep disorders that involve abnormal movements, behaviors, emotions, perceptions, and dreams that occur while falling asleep, sleeping, between sleep stages, or during arousal from sleep.”  https://en.wikipedia.org/wiki/Parasomnia

The therapeutic effects of Cannabis and cannabinoids: An update from the National Academies of Sciences, Engineering and Medicine report

European Journal of Internal Medicine

“The National Academies of Sciences, Engineering and Medicine conducted a rapid turn-around comprehensive review of recent medical literature on The Health Effects of Cannabis and Cannabinoids.

In the Therapeutics chapter reviewed here, the report concluded that there was conclusive or substantial evidence that Cannabis or cannabinoids are effective for the treatment of pain in adults; chemotherapy-induced nausea and vomiting and spasticity associated with multiple sclerosis. Moderate evidence was found for secondary sleep disturbances. The evidence supporting improvement in appetite, Tourette syndrome, anxiety, posttraumatic stress disorder, cancer, irritable bowel syndrome, epilepsy and a variety of neurodegenerative disorders was described as limited, insufficient or absent. A chapter of the NASEM report enumerated multiple barriers to conducting research on Cannabis in the US that may explain the paucity of positive therapeutic benefits in the published literature to date.

The 2017 National Academies of Sciences, Engineering and Medicine report, like the 1999 Institute of Medicine publication before it, did conclude that there is evidence to support the therapeutic effect of Cannabis and cannabinoids in a number of conditions. Although it is well appreciated that the plural of anecdote is not evidence, it must also be remembered that in the case of evaluating the therapeutic effects of Cannabis as published in the medical literature, the absence of evidence is not necessarily indicative of evidence of the absence of effectiveness. ”

http://www.ejinme.com/article/S0953-6205(18)30003-7/fulltext

“Researchers claim that medicinal cannabis is safe and effective for pain relief, and are calling for the treatment to be properly established in our modern medical arsenal” https://www.drugtargetreview.com/news/30737/medicinal-cannabis-safe-effective/

No Acute Effects of Cannabidiol on the Sleep-Wake Cycle of Healthy Subjects: A Randomized, Double-Blind, Placebo-Controlled, Crossover Study

Image result for frontiers in pharmacology

“Cannabidiol (CBD) is a component of Cannabis sativa that has a broad spectrum of potential therapeutic effects in neuropsychiatric and other disorders. However, few studies have investigated the possible interference of CBD on the sleep-wake cycle.

The aim of the present study was to evaluate the effect of a clinically anxiolytic dose of CBD on the sleep-wake cycle of healthy subjects in a crossover, double-blind design.

The drug did not induce any significant effect.

Different from anxiolytic and antidepressant drugs such as benzodiazepines and selective serotonin reuptake inhibitors, acute administration of an anxiolytic dose of CBD does not seem to interfere with the sleep cycle of healthy volunteers. The present findings support the proposal that CBD do not alter normal sleep architecture.

Cannabidiol may play a therapeutic role in sleep regulation.

We found no differences between CBD and placebo in respect to polysomnographic findings or cognitive and subjective measures in a sample of healthy subjects. Unlike widely used anxiolytic and antidepressant drugs such as benzodiazepines and SSRIs, the acute administration of an anxiolytic dose of CBD does not appear to interfere with the sleep cycle of healthy volunteers. Future studies should address the effects of CBD on the sleep-wake cycle of patient populations as well as evaluate the chronic effects of CBD in larger samples of patients with sleep and neuropsychiatric disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/29674967

https://www.frontiersin.org/articles/10.3389/fphar.2018.00315/full

Anandamide and 2-AG Are Endogenously Present within the Laterodorsal Tegmental Nucleus: Functional Implications for a role of eCBs in arousal.

Image result for Brain Research journal

“Previously, we presented electrophysiological evidence for presence in mice brain slices of functional cannabinoid type I receptors (CB1Rs) within the laterodorsal tegmentum (LDT), a brain stem nucleus critical in control of arousal and rapid eye movement (REM) sleep. Further, using pharmacological agents, we provided data suggestive of the endogenous presence of cannabinoids (CBs) acting at LDT CB1Rs. However, in those studies, we were unable to identify the type(s) of CB ligands endogenously present in the LDT, and this information has not been provided elsewhere. Accordingly, we used the highly-sensitive liquid chromatography/mass spectrometry (LC-MS) method to determine whether N-arachidonoylethanolamide (Anandamide or AEA) and 2-arachidonyl glycerol (2-AG), which are both endogenous CB ligands acting at CB1Rs, are present in the LDT. Mice brain tissue samples of the LDT were assayed using ion trap LC-MS in selected ion monitoring mode. Chromatographic analysis and product-ion MS scans identified presence of the CBs, AEA and 2-AG, from LDT mouse tissue. Data using the LC-MS method show that AEA and 2-AG are endogenously present within the LDT and when coupled with our electrophysiological findings, lead to the suggestion that AEA and 2-AG act at electropharmacologically-demonstrated CB1Rs in this nucleus. Accordingly, AEA and 2-AG likely play a role in processes governed by the LDT, including control of states of cortical gamma band activity seen in alert, aroused states, as well as cortical and motor activity characteristic of REM sleep.”

https://www.ncbi.nlm.nih.gov/pubmed/28404451

Substitution of medical cannabis for pharmaceutical agents for pain, anxiety, and sleep.

Image result for J Psychopharmacol.

“A prior epidemiological study identified a reduction in opioid overdose deaths in US states that legalized medical cannabis (MC). One theory to explain this phenomenon is a potential substitution effect of MC for opioids. This study evaluated whether this substitution effect of MC for opioids also applies to other psychoactive medications.

New England dispensary members ( n = 1,513) completed an online survey about their medical history and MC experiences. Among respondents that regularly used opioids, over three-quarters (76.7%) indicated that they reduced their use since they started MC. This was significantly ( p < 0.0001) greater than the patients that reduced their use of antidepressants (37.6%) or alcohol (42.0%). Approximately two-thirds of patients decreased their use of anti-anxiety (71.8%), migraine (66.7%), and sleep (65.2%) medications following MC which significantly ( p < 0.0001) exceeded the reduction in antidepressants or alcohol use. The patient’s spouse, family, and other friends were more likely to know about their MC use than was their primary care provider.

In conclusion, a majority of patients reported using less opioids as well as fewer medications to treat anxiety, migraines, and sleep after initiating MC. A smaller portion used less antidepressants or alcohol. Additional research is needed to corroborate these self-reported, retrospective, cross-sectional findings using other data sources.”

https://www.ncbi.nlm.nih.gov/pubmed/28372506

Cannabis, Cannabinoids, and Sleep: a Review of the Literature.

Image result for Curr Psychiatry Rep

“The current review aims to summarize the state of research on cannabis and sleep up to 2014 and to review in detail the literature on cannabis and specific sleep disorders from 2014 to the time of publication.

Preliminary research into cannabis and insomnia suggests that cannabidiol (CBD) may have therapeutic potential for the treatment of insomnia.

Delta-9 tetrahydrocannabinol (THC) may decrease sleep latency but could impair sleep quality long-term.

Novel studies investigating cannabinoids and obstructive sleep apnea suggest that synthetic cannabinoids such as nabilone and dronabinol may have short-term benefit for sleep apnea due to their modulatory effects on serotonin-mediated apneas.

CBD may hold promise for REM sleep behavior disorder and excessive daytime sleepiness, while nabilone may reduce nightmares associated with PTSD and may improve sleep among patients with chronic pain.

Research on cannabis and sleep is in its infancy and has yielded mixed results. Additional controlled and longitudinal research is critical to advance our understanding of research and clinical implications.”

https://www.ncbi.nlm.nih.gov/pubmed/28349316

Effectiveness of Cannabidiol Oil for Pediatric Anxiety and Insomnia as Part of Posttraumatic Stress Disorder: A Case Report.

Image result for The Permanente Journal

“Anxiety and sleep disorders are often the result of posttraumatic stress disorder and can contribute to an impaired ability to focus and to demonstration of oppositional behaviors.

CASE PRESENTATION:

These symptoms were present in our patient, a ten-year-old girl who was sexually abused and had minimal parental supervision as a young child under the age of five. Pharmaceutical medications provided partial relief, but results were not long-lasting, and there were major side effects. A trial of cannabidiol oil resulted in a maintained decrease in anxiety and a steady improvement in the quality and quantity of the patient’s sleep.

DISCUSSION:

Cannabidiol oil, an increasingly popular treatment of anxiety and sleep issues, has been documented as being an effective alternative to pharmaceutical medications. This case study provides clinical data that support the use of cannabidiol oil as a safe treatment for reducing anxiety and improving sleep in a young girl with posttraumatic stress disorder.”

https://www.ncbi.nlm.nih.gov/pubmed/27768570