The gastrointestinal tract – a central organ of cannabinoid signaling in health and disease.

Image result for Neurogastroenterol Motil

“In ancient medicine, extracts of the marijuana plant Cannabis sativa were used against diseases of the gastrointestinal (GI) tract.

Today, our knowledge of the ingredients of the Cannabis plant has remarkably advanced enabling us to use a variety of herbal and synthetic cannabinoid (CB) compounds to study the endocannabinoid system (ECS), a physiologic entity that controls tissue homeostasis with the help of endogenously produced CBs and their receptors.

After many anecdotal reports suggested beneficial effects of Cannabis in GI disorders, it was not surprising to discover that the GI tract accommodates and expresses all the components of the ECS.

Cannabinoid receptors and their endogenous ligands, the endocannabinoids, participate in the regulation of GI motility, secretion, and the maintenance of the epithelial barrier integrity.

In addition, other receptors, such as the transient receptor potential cation channel subfamily V member 1 (TRPV1), the peroxisome proliferator-activated receptor alpha (PPARα) and the G-protein coupled receptor 55 (GPR55), are important participants in the actions of CBs in the gut and critically determine the course of bowel inflammation and colon cancer.

PURPOSE:

The following review summarizes important and recent findings on the role of CB receptors and their ligands in the GI tract with emphasis on GI disorders, such as irritable bowel syndrome, inflammatory bowel disease, and colon cancer.”

http://www.ncbi.nlm.nih.gov/pubmed/27561826

Getting into the weed: the role of the endocannabinoid system in the brain-gut axis.

“The actions of cannabis are mediated by receptors that are part of an endogenous cannabinoid system.

The endocannabinoid system (ECS) consists of the naturally occurring ligands N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG), their biosynthetic and degradative enzymes, and the cannabinoid receptors CB1 and CB2.

The ECS is a widely distributed transmitter system that controls gut functions peripherally and centrally. It is an important physiologic regulator of gastrointestinal motility.

Polymorphisms in the gene encoding CB1 (CNR1) have been associated with some forms of irritable bowel syndrome. The ECS is involved in the control of nausea and vomiting and visceral sensation. The homeostatic role of the ECS also extends to the control of intestinal inflammation.

We review the mechanisms by which the ECS links stress and visceral pain. CB1 in sensory ganglia controls visceral sensation, and transcription of CNR1 is modified through epigenetic processes under conditions of chronic stress. These processes might link stress with abdominal pain.

The ECS is also involved centrally in the manifestation of stress, and endocannabinoid signaling reduces the activity of hypothalamic-pituitary-adrenal pathways via actions in specific brain regions-notably the prefrontal cortex, amygdala, and hypothalamus.

Agents that modulate the ECS are in early stages of development for treatment of gastrointestinal diseases. Increasing our understanding of the ECS will greatly advance our knowledge of interactions between the brain and gut and could lead to new treatments for gastrointestinal disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/27133395

ENDOCANNABINOID SYSTEM: A multi-facet therapeutic target.

Image result for Curr Clin Pharmacol.

“Cannabis sativa is also popularly known as marijuana. It is being cultivated and used by man for recreational and medicinal purposes from many centuries.

Study of cannabinoids was at bay for very long time and its therapeutic value could not be adequately harnessed due to its legal status as proscribed drug in most of the countries.

The research of drugs acting on endocannabinoid system has seen many ups and down in recent past. Presently, it is known that endocannabinoids has role in pathology of many disorders and they also serve “protective role” in many medical conditions.

Several diseases like emesis, pain, inflammation, multiple sclerosis, anorexia, epilepsy, glaucoma, schizophrenia, cardiovascular disorders, cancer, obesity, metabolic syndrome related diseases, Parkinson’s disease, Huntington’s disease, Alzheimer’s disease and Tourette’s syndrome could possibly be treated by drugs modulating endocannabinoid system.

Presently, cannabinoid receptor agonists like nabilone and dronabinol are used for reducing the chemotherapy induced vomiting. Sativex (cannabidiol and THC combination) is approved in the UK, Spain and New Zealand to treat spasticity due to multiple sclerosis. In US it is under investigation for cancer pain, another drug Epidiolex (cannabidiol) is also under investigation in US for childhood seizures. Rimonabant, CB1 receptor antagonist appeared as a promising anti-obesity drug during clinical trials but it also exhibited remarkable psychiatric side effect profile. Due to which the US Food and Drug Administration did not approve Rimonabant in US. It sale was also suspended across the EU in 2008.

Recent discontinuation of clinical trial related to FAAH inhibitor due to occurrence of serious adverse events in the participating subjects could be discouraging for the research fraternity. Despite of some mishaps in clinical trials related to drugs acting on endocannabinoid system, still lot of research is being carried out to explore and establish the therapeutic targets for both cannabinoid receptor agonists and antagonists.

One challenge is to develop drugs that target only cannabinoid receptors in a particular tissue and another is to invent drugs that acts selectively on cannabinoid receptors located outside the blood brain barrier. Besides this, development of the suitable dosage forms with maximum efficacy and minimum adverse effects is also warranted.

Another angle to be introspected for therapeutic abilities of this group of drugs is non-CB1 and non-CB2 receptor targets for cannabinoids.

In order to successfully exploit the therapeutic potential of endocannabinoid system, it is imperative to further characterize the endocannabinoid system in terms of identification of the exact cellular location of cannabinoid receptors and their role as “protective” and “disease inducing substance”, time-dependent changes in the expression of cannabinoid receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/27086601

Endocannabinoids and the Digestive Tract and Bladder in Health and Disease.

“Components of the so-called endocannabinoid system, i.e., cannabinoid receptors, endocannabinoids, as well as enzymes involved in endocannabinoid synthesis and degradation, have been identified both in the gastrointestinal and in the urinary tract.

Evidence suggests that the endocannabinoid system is implicated in many gastrointestinal and urinary physiological and pathophysiological processes, including epithelial cell growth, inflammation, analgesia, and motor function.

A pharmacological modulation of the endocannabinoid system might be beneficial for widespread diseases such as gastrointestinal reflux disease, irritable bowel syndrome, inflammatory bowel disease, colon cancer, cystitis, and hyperactive bladder.

Drugs that inhibit endocannabinoid degradation and raise the level of endocannabinoids, non-psychotropic cannabinoids (notably cannabidiol), and palmitoylethanolamide, an acylethanolamide co-released with the endocannabinoid anandamide, are promising candidates for gastrointestinal and urinary diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/26408170

[Cannabis – therapy for the future?]

“Despite all the progress achieved in the treatment of chronic gastrointestinal diseases, in some patients the treatment does not reach long-term optimum effectiveness. Therefore a number of patients have turned to complementary and alternative medicine (CAM).

Of the different types of CAM patients with GIT diseases tend to prefer in particular homeopathy, acupuncture and not least phytotherapy, where therapeutic use of cannabis may also be included.

The pathophysiological basis of therapeutic effect of curative cannabis has not been fully clarified so far.

Many scientists in many fields of medicine and pharmacology have been engaged in the study of effects of cannabinoids on the body since the beginning of the 20th century with the interest significantly increasing in the 1980s.

The discovery of CB receptors (1988) and endogenous molecules which activate these receptors (1992) led to the discovery of the endocannabinoid system.

Pharmacological modulation of the endogenous cannabinoid system offers new therapeutic possibilities of treatment of many illnesses and symptoms including the GIT disorders, including of nausea, vomiting, cachexia, IBS, Crohns disease and some other disorders.

Cannabinoids are attractive due to their therapeutic potential – they affect a lot of symptoms with minimum side effects.

Experience of patients with GIT disorders show that the use of cannabis is effective and helps in cases where the standard therapy fails.”

http://www.ncbi.nlm.nih.gov/pubmed/26375695

Clinical endocannabinoid deficiency (CECD) revisited: Can this concept explain the therapeutic benefits of cannabis in migraine, fibromyalgia, irritable bowel syndrome and other treatment-resistant conditions?

Image result for Neuro Endocrinol Lett

“Ethan B. Russo’s paper of December 1, 2003 explored the concept of a clinical endocannabinoid deficiency (CECD) underlying the pathophysiology of migraine, fibromyalgia, irritable bowel syndrome and other functional conditions alleviated by clinical cannabis.

Available literature was reviewed, including searches via the National Library of medicine database and other sources.

A review of the literature indicates that significant progress has been made since Dr. Ethan B. Russo’s landmark paper, just ten years ago (February 2, 2004). Investigation at that time suggested that cannabinoids can block spinal, peripheral and gastrointestional mechanisms that promote pain in headache, fibromyalgia, irritable bowel syndrome and muscle spasm.

CONCLUSION:

Subsequent research has confirmed that underlying endocannabinoid deficiencies indeed play a role in migraine, fibromyalgia, irritable bowel syndrome and a growing list of other medical conditions. Clinical experience is bearing this out. Further research and especially, clinical trials will further demonstrate the usefulness of medical cannabis. As legal barriers fall and scientific bias fades this will become more apparent.”  http://www.ncbi.nlm.nih.gov/pubmed/24977967

“Clinical endocannabinoid deficiency (CECD): can this concept explain therapeutic benefits of cannabis in migraine, fibromyalgia, irritable bowel syndrome and other treatment-resistant conditions? Migraine, fibromyalgia, IBS and related conditions display common clinical, biochemical and pathophysiological patterns that suggest an underlying clinical endocannabinoid deficiency that may be suitably treated with cannabinoid medicines.”  http://www.ncbi.nlm.nih.gov/pubmed/15159679

 

Endocannabinoid and Cannabinoid-Like Fatty Acid Amide Levels Correlate with Pain-Related Symptoms in Patients with IBS-D and IBS-C: A Pilot Study.

“Irritable bowel syndrome (IBS) is a functional gastrointestinal (GI) disorder, associated with alterations of bowel function, abdominal pain and other symptoms related to the GI tract. Recently the endogenous cannabinoid system (ECS) was shown to be involved in the physiological and pathophysiological control of the GI function. The aim of this pilot study was to investigate whether IBS defining symptoms correlate with changes in endocannabinoids or cannabinoid like fatty acid levels in IBS patients.

CONCLUSION:

IBS subtypes and their symptoms show distinct alterations of endocannabinoid and endocannabinoid-like fatty acid levels. These changes may partially result from reduced FAAH expression. The here reported changes support the notion that the ECS is involved in the pathophysiology of IBS and the development of IBS symptoms.”

Therapeutic potential of cannabinoid medicines.

Drug Testing and Analysis

“Cannabis was extensively used as a medicine throughout the developed world in the nineteenth century but went into decline early in the twentieth century ahead of its emergence as the most widely used illicit recreational drug later that century. Recent advances in cannabinoid pharmacology alongside the discovery of the endocannabinoid system (ECS) have re-ignited interest in cannabis-based medicines.

The ECS has emerged as an important physiological system and plausible target for new medicines. Its receptors and endogenous ligands play a vital modulatory role in diverse functions including immune response, food intake, cognition, emotion, perception, behavioural reinforcement, motor co-ordination, body temperature, wake/sleep cycle, bone formation and resorption, and various aspects of hormonal control. In disease it may act as part of the physiological response or as a component of the underlying pathology.

In the forefront of clinical research are the cannabinoids delta-9-tetrahydrocannabinol and cannabidiol, and their contrasting pharmacology will be briefly outlined. The therapeutic potential and possible risks of drugs that inhibit the ECS will also be considered. This paper will then go on to review clinical research exploring the potential of cannabinoid medicines in the following indications: symptomatic relief in multiple sclerosis, chronic neuropathic pain, intractable nausea and vomiting, loss of appetite and weight in the context of cancer or AIDS, psychosis, epilepsy, addiction, and metabolic disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/24006213

http://onlinelibrary.wiley.com/doi/10.1002/dta.1529/abstract

The endocannabinoid system and its therapeutic exploitation.

Image result for Nat Rev Drug Discov.

“The term ‘endocannabinoid’ – originally coined in the mid-1990s after the discovery of membrane receptors for the psychoactive principle in Cannabis, Delta9-tetrahydrocannabinol and their endogenous ligands – now indicates a whole signalling system that comprises cannabinoid receptors, endogenous ligands and enzymes for ligand biosynthesis and inactivation. This system seems to be involved in an ever-increasing number of pathological conditions. With novel products already being aimed at the pharmaceutical market little more than a decade since the discovery of cannabinoid receptors, the endocannabinoid system seems to hold even more promise for the future development of therapeutic drugs. We explore the conditions under which the potential of targeting the endocannabinoid system might be realized in the years to come.”  http://www.ncbi.nlm.nih.gov/pubmed/15340387

http://www.nature.com/nrd/journal/v3/n9/full/nrd1495.html

Marijuana might be able to treat your terrible case of the runs – MSN

“Seems there’s no end to the list of maladies medical marijuana can’t treat.”

Close-up of Marijuana Plant (© Adam Weiss/Getty Images) 

“The latest: diarrhea, the awful affliction that sounds like “dire rear” for a reason. According to the pot aficionados behind The Weed Blog (who mightn’t be the most unbiased sources on the matter), cannabis-derived products have been used to treat diarrhea in India since at least the late 1800s. These products reportedly cause diarrhea and its symptoms to subside, and — surprise, surprise — help patients regain their appetites. Around 3.5 million people die from diarrhea and its nasty effects every year, so these alleged benefits of pot aren’t just useful to stoners who could fake the runs to score a medical marijuana prescription.”