Add-on cannabidiol significantly decreases seizures in 3 patients with SYNGAP1 developmental and epileptic encephalopathy

“Mutations in SYNGAP1 are associated with developmental delay, epilepsy, and autism spectrum disorder (ASD). Epilepsy is often drug-resistant in this syndrome with frequent drop attacks.

In a prospective study of add-on cannabidiol (CBD), we identified three patients with SYNGAP1 mutations: two boys and one girl. Seizure onset was at 3.5, 8, and 18 months (M), respectively, with numerous atypical absences per day associated with eyelid myoclonia (2/3 patients), upper limb myoclonic jerks (2/3 patients), and drop attacks (all patients). Seizures were resistant to at least 5 antiepileptic drugs (AEDs).

After CBD introduction, two patients were responders since M2 and achieve a seizure reduction of 90% and 80%, respectively, at M9 with disappearance of drop attacks. EEGs showed an improvement regarding background activity and interictal anomalies. The last patient showed a late response at M7 of treatment with an 80% decrease in seizure frequency. Caregiver in all three evaluated as much improved the status of their children. Treatment was well-tolerated in all, and no major adverse events (AEs) were reported.

CBD showed efficacy in patients with drug-resistant epilepsy due to SYNGAP1 mutations. Other patients with rare genetic developmental and epileptic encephalopathies with drug-resistant epilepsies might benefit from CBD.”

https://pubmed.ncbi.nlm.nih.gov/32913957/

“CBD add‐on therapy in patients with SYNGAP1 encephalopathy showed a good response in three patients with a good safety profile and a late response in one patient. This therapy should be included in the treatment algorithm of patients with SYNGAP1 mutations presenting drug resistance epilepsy and might be expanded to other rare genetic epilepsies that might not be included in formal trials.”

https://onlinelibrary.wiley.com/doi/full/10.1002/epi4.12411

Receptors and Channels Possibly Mediating the Effects of Phytocannabinoids on Seizures and Epilepsy

pharmaceuticals-logo“Epilepsy contributes to approximately 1% of the global disease burden. By affecting especially young children as well as older persons of all social and racial variety, epilepsy is a present disorder worldwide. Currently, only 65% of epileptic patients can be successfully treated with antiepileptic drugs. For this reason, alternative medicine receives more attention.

Cannabis has been cultivated for over 6000 years to treat pain and insomnia and used since the 19th century to suppress epileptic seizures.

The two best described phytocannabinoids, (-)-trans9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are claimed to have positive effects on different neurological as well as neurodegenerative diseases, including epilepsy.

There are different cannabinoids which act through different types of receptors and channels, including the cannabinoid receptor 1 and 2 (CB1, CB2), G protein-coupled receptor 55 (GPR55) and 18 (GPR18), opioid receptor µ and δ, transient receptor potential vanilloid type 1 (TRPV1) and 2 (TRPV2), type A γ-aminobutyric acid receptor (GABAAR) and voltage-gated sodium channels (VGSC).

The mechanisms and importance of the interaction between phytocannabinoids and their different sites of action regarding epileptic seizures and their clinical value are described in this review.”

https://pubmed.ncbi.nlm.nih.gov/32751761/

https://www.mdpi.com/1424-8247/13/8/174

Cannabidiol inhibits febrile seizure by modulating AMPA receptor kinetics through its interaction with the N-terminal domain of GluA1/GluA2

Pharmacological Research “Cannabidiol (CBD) is a major phytocannabinoid in Cannabis sativa. CBD is being increasingly reported as a clinical treatment for neurological diseases.

Febrile seizure is one of the most common diseases in children with limited therapeutic options. We investigated possible therapeutic effects of CBD on febrile seizures and the underlying mechanism.

Use of a hyperthermia-induced seizures model revealed that CBD significantly prolonged seizure latency and reduced the severity of thermally-induced seizures. Hippocampal neuronal excitability was significantly decreased by CBD. Further, CBD significantly reduced the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) mediated evoked excitatory postsynaptic currents (eEPSCs) and the amplitude and frequency of miniature EPSCs (mEPSCs).

Furthermore, CBD significantly accelerated deactivation in GluA1 and GluA2 subunits. Interestingly, CBD slowed receptor recovery from desensitization of GluA1, but not GluA2. These effects on kinetics were even more prominent when AMPAR was co-expressed with γ-8, the high expression isoform 8 of transmembrane AMPAR regulated protein (TARPγ8) in the hippocampus. The inhibitory effects of CBD on AMPAR depended on its interaction with the distal N-terminal domain of GluA1/GluA2.

CBD inhibited AMPAR activity and reduced hippocampal neuronal excitability, thereby improving the symptoms of febrile seizure in mice. The putative binding site of CBD in the N-terminal domain of GluA1/GluA2 may be a drug target for allosteric gating modulation of AMPAR.”

https://pubmed.ncbi.nlm.nih.gov/32805354/

“Cannabidiol (CBD) significantly prolonged seizure latency and reduced seizure severity.”

https://www.sciencedirect.com/science/article/abs/pii/S1043661820314365?via%3Dihub

Cannabidiol normalizes resting-state functional connectivity in treatment-resistant epilepsy

See the source image“Resting-state (rs) network dysfunction is a contributing factor to treatment resistance in epilepsy. In treatment-resistant epilepsy (TRE), pharmacological and nonpharmacological therapies have been shown to improve such dysfunction.

In this study, our goal was to prospectively evaluate the effect of highly purified plant-derived cannabidiol (CBD; Epidiolex®) on rs functional magnetic resonance imaging (fMRI) functional connectivity (rs-FC).

We hypothesized that CBD would change and potentially normalize the rs-FC in TRE.

Results: Participants with TRE showed average decrease of 71.7% in SF (p < 0.0001) and improved CSSS, AEP, and POMS confusion, depression, and fatigue subscores (all p < 0.05) on-CBD with POMS scores becoming similar to those of HCs. Paired t-tests showed significant pre-/on-CBD changes in rs-FC in cerebellum, frontal areas, temporal areas, hippocampus, and amygdala with some of them correlating with improvement in behavioral measures. Significant differences in rs-FC between pre-CBD and HCs were found in cerebellum, frontal, and occipital regions. After controlling for changes in SF with CBD, these differences were no longer present when comparing on-CBD to HCs.

Significance: This study indicates that highly purified CBD modulates and potentially normalizes rs-FC in the epileptic brain. This effect may underlie its efficacy. This study provides Class III evidence for CBD’s normalizing effect on rs-FC in TRE.”

https://pubmed.ncbi.nlm.nih.gov/32745959/

https://www.epilepsybehavior.com/article/S1525-5050(20)30476-5/fulltext

Understanding the basics of cannabidiol from cannabis to apply to therapeutics in epilepsy

Page Header“The compounds present in cannabis have been in use for both recreational and medicinal purposes for many centuries. Changes in the legislation in South Africa have led to an increase in the number of people interested in using these compounds for self-medication. Many of them may approach their general practitioner as the first source of information about possible therapeutic effects. It is important that medical professionals are able to give patients the correct information. Cannabidiol (CBD) is one of the main compounds in cannabis plants, and there is evidence that it can successfully treat certain patients with epilepsy. This review looks at the most recent evidence on the use of CBD in the treatment of epilepsy and explores the mechanisms behind these beneficial effects.”

https://pubmed.ncbi.nlm.nih.gov/32657678/

http://www.samj.org.za/index.php/samj/article/view/12839

Anticonvulsive Properties of Cannabidiol in a Model of Generalized Seizure Are Transient Receptor Potential Vanilloid 1 Dependent

View details for Cannabis and Cannabinoid Research cover image“Highly purified cannabidiol (CBD) (approved as Epidiolex® in the United States) has demonstrated efficacy with an acceptable safety profile in patients with Lennox-Gastaut or Dravet syndrome in four randomized controlled trials. CBD possesses affinity for many target classes with functional effects relevant to the pathophysiology of many disease types, including epilepsy.

Although the mechanism of action of CBD underlying the reduction of seizures in humans is unknown, transient receptor potential vanilloid 1 (TRPV1) represents a plausible target because (1) CBD activates and then desensitizes TRPV1, (2) TRPV1 is overexpressed in models of temporal lobe epilepsy and patients with epilepsy, (3) and TRPV1 modulates neuronal excitability.

Methods: To investigate a potential role of TRPV1 in the anticonvulsive effects of CBD, the effect of CBD on seizure threshold was assessed using a mouse maximal electroshock threshold model of generalized seizure in TRPV1 knockout and wildtype mice. The dose dependence of the CBD effect was determined and compared with that of the positive comparator diazepam and vehicle.

Results: At 50 and 100 mg/kg, CBD significantly (p<0.0001) increased seizure threshold in wildtype mice compared with TRPV1 knockout and vehicle controls. This effect was observed only at 100 mg/kg in TRPV1 knockout mice compared with knockout vehicle mice, in which gene deletion partially attenuated the CBD-increased seizure threshold. The effect of high-dose CBD in wildtype mice was nevertheless significantly different from vehicle-treated TRPV1 knockout mice (p<0.0001). Bioanalysis confirmed that genotype-specific differential brain exposure to CBD was not responsible for the observed effect on seizure threshold.

Conclusion: These data strongly implicate TRPV1 in the potential mechanisms of action for the anticonvulsive effects of CBD. The partial inhibition of the anticonvulsive effect of high-dose CBD in TRPV1 knockout mice may indicate the involvement of targets other than TRPV1. Further characterization of TRPV1 in the anticonvulsive effect of CBD in validated models of seizure is warranted, as is pharmacological investigation of the molecular interaction between CBD and TRPV1.”

https://pubmed.ncbi.nlm.nih.gov/32656346/

https://www.liebertpub.com/doi/10.1089/can.2019.0028

Cannabidiol Efficacy Independent of Clobazam: Meta-Analysis of Four Randomized-Controlled Trials

 Acta Neurologica ScandinavicaThe efficacy of cannabidiol (CBD) with and without concomitant clobazam (CLB) was evaluated in stratified analyses of four large randomized controlled trials, two in Lennox-Gastaut syndrome and two in Dravet syndrome.

Results: The meta-analysis favored CBD vs. placebo regardless of CLB use. The treatment ratio (95% CI) of CBD over placebo for the average reduction in seizure frequency was 0.59 (0.52, 0.68; p<0.0001) with CLB and 0.85 (0.73, 0.98; p=0.0226) without CLB, and the 50% responder rate odds ratio (95% CI) was 2.51 (1.69, 3.71; p<0.0001) with CLB and 2.40 (1.38, 4.16; p=0.0020) without CLB. Adverse events (AEs) related to somnolence, rash, pneumonia, or aggression were more common in patients with concomitant CLB. There was a significant exposure/response relationship for CBD and its active metabolite.

Conclusions: These results indicate CBD is efficacious with and without CLB, but do not exclude the possibility of a synergistic effect associated with the combination of agents. The safety and tolerability profile of CBD without CLB shows a lower rate of certain AEs than with CLB.”

https://pubmed.ncbi.nlm.nih.gov/32592183/

https://onlinelibrary.wiley.com/doi/abs/10.1111/ane.13305

Cannabidiol Anticonvulsant Effect Is Mediated by the PI3Kγ Pathway

Neuropharmacology“The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/Akt)/mechanistic target of rapamycin (mTOR) signaling pathway has been associated with several pathologies in the central nervous system (CNS), including epilepsy. There is evidence supporting the hypothesis that the PI3Kγ signaling pathway may mediate the powerful anticonvulsant properties associated with the cannabinoidergic system.

This work aims to investigate if the anticonvulsant and neuroprotective effects of cannabidiol (CBD) are mediated by PI3Kγ.

CDB increased latency and reduced the severity of pilocarpine-induced behavioral seizures, as well as prevented postictal changes, such as neurodegeneration, microgliosis and astrocytosis, in WT animals, but not in PI3Kγ-/-. CBD in vivo effects were abolished by pharmacological inhibition of cannabinoid receptor or mTOR. In vitro, PI3Kγ inhibition or deficiency also changed CBD protection observed in glutamate-induced cell death assay. Thus, we suggest that the modulation of PI3K/mTOR signaling pathway is involved in the anticonvulsant and neuroprotective effects of CBD.

These findings are important not only for the elucidation of the mechanisms of action of CBD, which are currently poorly understood, but also to allow the prediction of therapeutic and side effects, ensuring efficacy and safety in the treatment of patients with epilepsy.”

https://pubmed.ncbi.nlm.nih.gov/32574650/

“CBD is anticonvulsant in a model of pilocarpine-induced behavioral seizures. CB1 receptor mediates the effects of CBD. PI3Kγ pathway mediates the anticonvulsant neuroprotective effects of CBD.”

https://www.sciencedirect.com/science/article/abs/pii/S0028390820302240?via%3Dihub

Current Application of Cannabidiol (CBD) in the Management and Treatment of Neurological Disorders

SpringerLink“Cannabidiol (CBD), which is nonintoxicating pharmacologically relevant constituents of Cannabis, demonstrates several beneficial effects. It has been found to have antioxidative, anti-inflammatory, and neuroprotective effects. As the medicinal use of CBD is gaining popularity for treatment of various disorders, the recent flare-up of largely unproven and unregulated cannabis-based preparations on medical therapeutics may have its greatest impact in the field of neurology. Currently, as lot of clinical trials are underway, CBD demonstrates remarkable potential to become a supplemental therapy in various neurological conditions. It has shown promise in the treatment of neurological disorders such as anxiety, chronic pain, trigeminal neuralgia, epilepsy, and essential tremors as well as psychiatric disorders. While recent FDA-approved prescription drugs have demonstrated safety, efficacy, and consistency enough for regulatory approval in spasticity in multiple sclerosis (MS) and in Dravet and Lennox-Gastaut Syndromes (LGS), many therapeutic challenges still remain. In the current review, the authors have shed light on the application of CBD in the management and treatment of various neurological disorders.”

https://pubmed.ncbi.nlm.nih.gov/32556748/

https://link.springer.com/article/10.1007%2Fs10072-020-04514-2

Plant Derived Versus Synthetic Cannabidiol: Wishes and Commitment of Epilepsy Patients

 cannabidiol | www.thctotalhealthcare.com“A special component of cannabis, cannabidiol (CBD), is currently in the focus of epilepsy treatment and research. In this context, we investigated patients’ expectations and preferences pertaining to plant-derived versus synthetic formulation of cannabidiol, as well as their willingness to get this treatment.

Methods: One hundred and four of 153 patients with different forms of epilepsy (54 % female, mean age 40 ± 16 yrs.) responded to the survey. The survey consisted of 8 questions addressing expectations of and concerns towards CBD treatment, preferences of plant-derived versus synthetic CBD, estimated monthly costs, and willingness to buy CBD at one’s own expense.

Results: The majority (73 %) of the responding epilepsy patients wished to receive plant-derived CBD; 5 % preferred synthetic CBD. Reasons for this choice were botanic origin, lack of chemistry, and the assumption of fewer and less dangerous side effects. Eighty-two percent of the patients estimated the monthly costs of CBD treatment to be below €500. Using the willingness-to-pay approach to assess the commitment of patients, 68 % could imagine buying the drug themselves. Fifty-three percent of these would be willing to pay up to €100, 40 % €100 to €200, and another 7 % €200 to €500 per month.

Conclusion: There is an overwhelming preference towards plant-derived cannabidiol in epilepsy patients, driven by the idea of organic substances being safer and better tolerated than synthetic. The willingness-to-pay approach reflects the high burden and pressure of uncontrolled epilepsy and the expectation of relief. Non-realistic ideas of pricing as well as what patients would be willing and able to pay confirm this perception.”

https://pubmed.ncbi.nlm.nih.gov/32554292/

“Epilepsy patients preferred plant-derived cannabidiol to synthetic cannabidiol.”

https://www.seizure-journal.com/article/S1059-1311(20)30175-8/pdf