Protective and therapeutic effects of cannabis plant extract on liver cancer induced by dimethylnitrosamine in mice

Cover image

“Hepatocellular carcinomas will emerge as a major form of malignancy in the coming decades.

When these tumors are in advanced stages, few therapeutic options are available.

Therefore, it is essential to search for new treatment modalities to fight this disease.

Aim

Evaluate the possible protective and therapeutic effects of Cannabis extract on dimethylnitrosamine (DMNA)-induced hepatocarcinogenicity in mice.

Conclusion

The protective effect of cannabis extract is more pronounced in group taking cannabis before DMNA.

Cannabinoids might exert their anti-tumor effects by the direct induction of apoptosis and can decrease telomerase activity by inhibiting the expression of the TERT gene…”

http://www.sciencedirect.com/science/article/pii/S209050681400027X

 http://www.thctotalhealthcare.com/category/liver-cancer-2/

Two non-psychoactive cannabinoids reduce intra-cellular lipid levels and inhibit hepatosteatosis.

“Obesity and associated metabolic syndrome have quickly become a pandemic and a major detriment to human health globally.

The presence of non-alcoholic fatty liver disease (NAFLD; hepatosteatosis) in obesity has been linked to the worsening of the metabolic syndrome, including the development of insulin resistance and cardiovascular disease. Currently, there are few options to treat NAFLD, including life style changes and insulin sensitizers.

Recent evidence suggests that the cannabinoids Δ9-tetrahydrocannabivarin (THCV) and cannabidiol (CBD) improve insulin sensitivity; we aimed at studying their effects on lipid levels…

THCV and CBD directly reduce accumulated lipid levels in vitro in a hepatosteatosis model and adipocytes.

…these cannabinoids are able to increase yolk lipid mobilization and inhibit the development of hepatosteatosis respectively.

CONCLUSIONS:

Our results suggest that THCV and CBD might be used as new therapeutic agents for the pharmacological treatment of obesity- and metabolic syndrome-related NAFLD/hepatosteatosis.”

http://www.ncbi.nlm.nih.gov/pubmed/25595882

http://www.thctotalhealthcare.com/category/obesity-2/

Attenuation of experimental autoimmune hepatitis by exogenous and endogenous cannabinoids: involvement of regulatory T cells.

Fig. 1

“Immune-mediated liver diseases including autoimmune and viral hepatitis are a major health problem worldwide. Natural cannabinoids such as Delta(9)-tetrahydrocannabinol (THC) effectively modulate immune cell function, and they have shown therapeutic potential in treating inflammatory diseases.

We investigated the effects of THC in a murine model of concanavalin A (ConA)-induced hepatitis…

Our data demonstrate that targeting cannabinoid receptors using exogenous or endogenous cannabinoids and use of FAAH inhibitors may constitute novel therapeutic modalities to treat immune-mediated liver inflammation.

δ-9-Tetrahydrocannabinol (THC), the major psychoactive component of marijuana (Cannabis sativa), has wide-ranging pharmacological properties. The cannabinoid compounds possess significant immunosuppressive and anti-inflammatory properties. THC and cannabinoid receptor agonists have shown promise in several models of inflammation.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2828293/

Role of Myeloid-Derived Suppressor Cells in Amelioration of Experimental Autoimmune Hepatitis Following Activation of TRPV1 Receptors by Cannabidiol

Figure 1

“Myeloid-derived suppressor cells (MDSCs) are getting increased attention as one of the main regulatory cells of the immune system. They are induced at sites of inflammation and can potently suppress T cell functions. In the current study, we demonstrate how activation of TRPV1 vanilloid receptors can trigger MDSCs, which in turn, can inhibit inflammation and hepatitis…

This study demonstrates for the first time that MDSCs play a critical role in attenuating acute inflammation in the liver, and that agents such as CBD, which trigger MDSCs through activation of TRPV1 vanilloid receptors may constitute a novel therapeutic modality to treat inflammatory diseases.

Cannabidiol (CBD) is a major non-psychoactive cannabinoid component of marijuana.

Together, these studies not only demonstrate that CBD can protect the host from acute liver injury but also provide evidence for the first time that MDSCs may play a critical role in protecting the liver from acute inflammation.

Non-psychoactive cannabinoids such as CBD possess great therapeutic potential in treating various inflammatory liver diseases, including autoimmune hepatitis.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3069975/

A biosynthetic pathway for anandamide

“The endocannabinoid arachidonoyl ethanolamine (anandamide) is a lipid transmitter synthesized and released “on demand” by neurons in the brain. Anandamide is also generated by macrophages where its endotoxin (LPS)-induced synthesis has been implicated in the hypotension of septic shock and advanced liver cirrhosis. Anandamide can be generated from its membrane precursor, N-arachidonoyl phosphatidylethanolamine (NAPE) through cleavage by a phospholipase D (NAPE-PLD).

Here we document a biosynthetic pathway for anandamide in mouse brain…

Both PTPN22 and endocannabinoids have been implicated in autoimmune diseases, suggesting that the PLC/phosphatase pathway of anandamide synthesis may be a pharmacotherapeutic target.

The observed exclusive role of the PLC/phosphatase pathway in LPS-induced AEA synthesis may offer therapeutic targets for the treatment of these conditions.

Furthermore, cannabinoids have immunosuppressive effects in autoimmune models of multiple sclerosis and diabetes, and mice deficient in CB1 receptors show increased susceptibility to neuronal damage found in autoimmune encephalitis…”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1557387/#!po=23.3333

A potential role for GPR55 in the regulation of energy homeostasis.

“G protein-coupled receptor 55 (GPR55) is a putative cannabinoid receptor that is expressed in several tissues involved in regulating energy homeostasis, including the hypothalamus, gastrointestinal tract, pancreas, liver, white adipose and skeletal muscle.

GPR55 has been shown to have a role in cancer and gastrointestinal inflammation, as well as in obesity and type 2 diabetes mellitus (T2DM).

Despite this, the (patho)physiological role of GPR55 in cell dysfunction is still poorly understood, largely because of the limited identification of downstream signalling targets.

Nonetheless, research has suggested that GPR55 modulation would be a useful pharmacological target in metabolically active tissues to improve treatment of diseases such as obesity and T2DM.

Further research is essential to gain a better understanding of the role that this receptor might have in these and other pathophysiological conditions.”

http://www.ncbi.nlm.nih.gov/pubmed/24370891

Therapeutic potential of cannabinoid medicines.

Drug Testing and Analysis

“Cannabis was extensively used as a medicine throughout the developed world in the nineteenth century but went into decline early in the twentieth century ahead of its emergence as the most widely used illicit recreational drug later that century. Recent advances in cannabinoid pharmacology alongside the discovery of the endocannabinoid system (ECS) have re-ignited interest in cannabis-based medicines.

The ECS has emerged as an important physiological system and plausible target for new medicines. Its receptors and endogenous ligands play a vital modulatory role in diverse functions including immune response, food intake, cognition, emotion, perception, behavioural reinforcement, motor co-ordination, body temperature, wake/sleep cycle, bone formation and resorption, and various aspects of hormonal control. In disease it may act as part of the physiological response or as a component of the underlying pathology.

In the forefront of clinical research are the cannabinoids delta-9-tetrahydrocannabinol and cannabidiol, and their contrasting pharmacology will be briefly outlined. The therapeutic potential and possible risks of drugs that inhibit the ECS will also be considered. This paper will then go on to review clinical research exploring the potential of cannabinoid medicines in the following indications: symptomatic relief in multiple sclerosis, chronic neuropathic pain, intractable nausea and vomiting, loss of appetite and weight in the context of cancer or AIDS, psychosis, epilepsy, addiction, and metabolic disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/24006213

http://onlinelibrary.wiley.com/doi/10.1002/dta.1529/abstract

Peripherally restricted CB1 receptor blockers.

“Antagonists (inverse agonists) of the cannabinoid-1 (CB1) receptor showed promise as new therapies for controlling obesity and related metabolic function/liver disease.

These agents, representing diverse chemical series, shared the property of brain penetration due to the initial belief that therapeutic benefit was mainly based on brain receptor interaction. However, undesirable CNS-based side effects of the only marketed agent in this class, rimonabant, led to its removal, and termination of the development of other clinical candidates soon followed. Re-evaluation of this approach has focused on neutral or peripherally restricted (PR) antagonists.

Supporting these strategies, pharmacological evidence indicates most if not all of the properties of globally acting agents may be captured by molecules with little brain presence. Methodology that can be used to eliminate BBB penetration and the means (in vitro assays, tissue distribution and receptor occupancy determinations, behavioral paradigms) to identify potential agents with little brain presence is discussed.

Focus will be on the pharmacology supporting the contention that reported agents are truly peripherally restricted. Notable examples of these types of compounds are: TM38837 (structure not disclosed); AM6545 (8); JD5037 (15b); RTI-12 (19).”

http://www.ncbi.nlm.nih.gov/pubmed/23902803

The endocannabinoid system in advanced liver cirrhosis: pathophysiological implication and future perspectives.

“Endogenous cannabinoids (EC) are ubiquitous lipid signalling molecules providing different central and peripheral effects that are mediated mostly by the specific receptors CB1 and CB2. The EC system is highly upregulated during chronic liver disease and consistent experimental and clinical findings indicate that it plays a role in the pathogenesis of liver fibrosis and fatty liver disease associated with obesity, alcohol abuse and hepatitis C.

Furthermore, a considerable number of studies have shown that EC and their receptors contribute to the pathogenesis of the cardio-circulatory disturbances occurring in advanced cirrhosis, such as portal hypertension, hyperdynamic circulatory syndrome and cirrhotic cardiomyopathy.

More recently, the EC system has been implicated in the development of ascites, hepatic encephalopathy and the inflammatory response related to bacterial infection. Rimonabant, a selective CB1 antagonist, was the first drug acting on the EC system approved for the treatment of obesity. Unfortunately, it has been withdrawn from the market because of its neuropsychiatric side effects.

Compounds able to target selectively the peripheral CB1 receptors are under evaluation.

In addition, molecules stimulating CB2 receptor or modulating the activity of enzymes implicated in EC metabolism are promising areas of pharmacological research.

Liver cirrhosis and the related complications represent an important target for the clinical application of these compounds.”

http://www.ncbi.nlm.nih.gov/pubmed/23890208

[Marihuana and cannobinoids as medicaments].

“Biological activity of cannabinoids is caused by binding to two cannabinoid receptors CB1 and CB2. Psychoactive is not only tetrahydrocannabinol (THC) but also: cannabidiol, cannabigerol or cannabichromen.

Formerly, the usefulness of hemp was assessed in the relation to temporary appeasement of the symptoms of some ailments as nausea or vomiting.

Present discoveries indicates that cannabis-based drugs has shown ability to alleviate of autoimmunological disorders such as: Multiple sclerosis (MS), Rheumatoid arthritis (RA) or inflammatory bowel disease.

Another studies indicates that cannabinoids play role in treatment of neurological disorders like Alzheimer disease or Amyotrophic lateral sclerosis (ALS) or even can reduce spreading of tumor cells.

Cannabinoids stand out high safety profile considering acute toxicity, it is low possibility of deadly overdosing and side-effects are comprise in range of tolerated side-effects of other medications.

In some countries marinol and nabilone are used as anti vomiting and nausea drug. First cannabis-based drug containg naturally occurring cannabinoids is Sativex. Sativex is delivered in an mucosal spray for patients suffering from spasticity in MS, pain relevant with cancer and neuropathic pain of various origin.

Cannabis side-effects varies and depend from several factors like administrated dose, rout of administration and present state of mind. After sudden break from long-lasting use, withdrawal symptoms can appear, although they entirely disappear after a week or two.”

http://www.ncbi.nlm.nih.gov/pubmed/23421098